-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
73 lines (58 loc) · 2.25 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pandas as pd
import phenograph
import pickle
from sklearn.metrics.cluster import adjusted_rand_score
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
# For this demo we normalize data using scanpy which is not a required package for scScope.
# To install, use: pip install scanpy
import scanpy.api as sc
def RUN_MAIN():
# 1. Load gene expression matrix of simulated data
# gene expression with simulated dropouts
counts_drop = pd.read_csv('counts_1.csv', header=0, index_col=0)
# ground trouth subpopulation assignment
cellinfo = pd.read_csv('cellinfo_1.csv', header=0, index_col=0)
group = cellinfo.Group
label_ground_truth = []
for g in group:
g = int(g.split('Group')[1])
label_ground_truth.append(g)
# 2. Normalize gene expression based on scanpy (normalize each cell to have same library size)
# matrix of cells x genes
gene_expression = sc.AnnData(counts_drop.values)
# normalize each cell to have same count number
sc.pp.normalize_per_cell(gene_expression)
# update datastructure to use normalized data
gene_expression = gene_expression.X
latent_dim = 50
# 3. scScope learning
if gene_expression.shape[0] >= 100000:
DI_model = train(
gene_expression, latent_dim, T=2, batch_size=512, max_epoch=10, num_gpus=1, epoch_per_check=25)
else:
DI_model = train(
gene_expression, latent_dim, T=2, batch_size=64, max_epoch=300, num_gpus=1, epoch_per_check=25)
# 4. latent representations and imputed expressions
latent_code, imputed_val, _ = predict(
gene_expression, DI_model)
# 5. graph clustering
if latent_code.shape[0] <= 10000:
label, _, _ = phenograph.cluster(latent_code)
else:
label = scalable_cluster(latent_code)
# evaluate
ARI = adjusted_rand_score(label, label_ground_truth)
print(ARI)
X_embedded = TSNE(n_components=2).fit_transform(latent_code)
# visualization of the subpopulation using tSNE
plt.figure()
for i in range(5):
idx = np.nonzero(label == i)[0]
plt.scatter(X_embedded[idx, 0], X_embedded[idx, 1], alpha=0.5)
plt.show()
if __name__ == '__main__':
RUN_MAIN()