From 511242219affad271cabcdcbb100e1c22a915751 Mon Sep 17 00:00:00 2001 From: RemyDegenne Date: Thu, 7 Mar 2024 16:20:28 +0100 Subject: [PATCH] blueprint: simple fDiv lemmas --- blueprint/src/sections/f_divergence.tex | 39 +++++++++++++++++++++ blueprint/src/sections/kl_divergence.tex | 2 +- blueprint/src/sections/renyi_divergence.tex | 4 +-- 3 files changed, 42 insertions(+), 3 deletions(-) diff --git a/blueprint/src/sections/f_divergence.tex b/blueprint/src/sections/f_divergence.tex index 452b18d1..78c4ae4a 100644 --- a/blueprint/src/sections/f_divergence.tex +++ b/blueprint/src/sections/f_divergence.tex @@ -38,6 +38,45 @@ \section{Definition and basic properties} $\frac{d \mu}{d \mu}(x) = 1$ almost everywhere and $f(1) = 0$. \end{proof} +\begin{lemma} + \label{lem:fDiv_mul} + %\lean{} + %\leanok + \uses{def:fDiv} + For all $a \in \mathbb{R}$, $D_{a f}(\mu, \nu) = a D_{f}(\mu, \nu)$. +\end{lemma} + +\begin{proof} +Linearity of the integral. +\end{proof} + +\begin{lemma} + \label{lem:fDiv_linear} + %\lean{} + %\leanok + \uses{def:fDiv} + For finite measures $\mu$ and $\nu$ with $\mu(\mathcal X) = \nu(\mathcal X)$, $D_{x - 1}(\mu, \nu) = 0$. +\end{lemma} + +\begin{proof} +Computation. +\end{proof} + +\begin{lemma} + \label{lem:fDiv_add_linear} + %\lean{} + %\leanok + \uses{def:fDiv} + For finite measures $\mu$ and $\nu$ with $\mu(\mathcal X) = \nu(\mathcal X)$, for all $a \in \mathbb{R}$, $D_{f + a(x - 1)}(\mu, \nu) = D_{f}(\mu, \nu)$. +\end{lemma} + +This means that we can always choose $f'(1) = 0$ if we want (and $f$ is differentiable at $1$). + +\begin{proof} +\uses{lem:fDiv_add, lem:fDiv_mul, lem:fDiv_linear} +Linearity (Lemmas~\ref{lem:fDiv_add} and~\ref{lem:fDiv_mul}), then Lemma~\ref{lem:fDiv_linear}. +\end{proof} + \section{Conditional f-divergence} \begin{lemma} diff --git a/blueprint/src/sections/kl_divergence.tex b/blueprint/src/sections/kl_divergence.tex index 494eee6c..307894f1 100644 --- a/blueprint/src/sections/kl_divergence.tex +++ b/blueprint/src/sections/kl_divergence.tex @@ -17,7 +17,7 @@ \chapter{Kullback-Leibler divergence} %\lean{} %\leanok \uses{def:KL, def:fDiv} - $\KL(\mu, \nu) = D_f(\mu, \nu)$ for $f: x \mapsto x \log x$ or $f: x \mapsto x \log x - x + 1$. + $\KL(\mu, \nu) = D_f(\mu, \nu)$ for $f: x \mapsto x \log x$ or, for probability measures, $f: x \mapsto x \log x - x + 1$. \end{lemma} \begin{proof} diff --git a/blueprint/src/sections/renyi_divergence.tex b/blueprint/src/sections/renyi_divergence.tex index ece8cd81..00687994 100644 --- a/blueprint/src/sections/renyi_divergence.tex +++ b/blueprint/src/sections/renyi_divergence.tex @@ -16,7 +16,7 @@ \chapter{Rényi divergences} %\lean{} %\leanok \uses{def:fDiv, def:Renyi} - $R_\alpha(\mu, \nu) = \frac{1}{\alpha - 1} \log (1 + (\alpha - 1) D_f(\nu, \mu))$ for $f : x \mapsto \frac{1}{\alpha - 1}(x^{\alpha} - \alpha x + \alpha - 1)$. It is thus a monotone transformation of a f-divergence. + $R_\alpha(\mu, \nu) = \frac{1}{\alpha - 1} \log (1 + (\alpha - 1) D_f(\nu, \mu))$ for $f : x \mapsto \frac{1}{\alpha - 1}(x^{\alpha} - 1)$, which is convex with $f(1)=0$. It is thus a monotone transformation of a f-divergence. TODO: use this for the definition? \end{lemma} @@ -72,7 +72,7 @@ \chapter{Rényi divergences} %\lean{} %\leanok \uses{def:Renyi} - Let $\mu, \nu$ be two measures on $\mathcal X$. Let $n \in \mathbb{N}$ and write $\mu^{\otimes n}$ for the product measure on $\mathbb{R}^n$ of $n$ times $\mu$. + Let $\mu, \nu$ be two measures on $\mathcal X$. Let $n \in \mathbb{N}$ and write $\mu^{\otimes n}$ for the product measure on $\mathcal X^n$ of $n$ times $\mu$. Then $R_\alpha(\mu^{\otimes n}, \nu^{\otimes n}) = n R_\alpha(\mu, \nu)$. \end{corollary}