-
Notifications
You must be signed in to change notification settings - Fork 1
/
SelwynModel.txt
141 lines (124 loc) · 10.5 KB
/
SelwynModel.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
%% Selwyn XChannel model setup file
%% ============================== Hydraulics ==============================
% Geometry
Geometry = Selwyn_XS3_3m.csv % CSV file with 2 or 3 columns (no headers):
% 1: Cell centre position [m]
% 2: Cell centre elevation [m]
% 3: Final cell centre elevation [m] (optional, purely for display purposes)
Slope = 0.007 % overall average ~0.007 but locally may be lower? % [m/m]
Radius = 185 % 185 = average of measured pre and post bank curvature at XS3
% Flow
Flow = SelwynFlow2008.csv % 0 time = 30/7/2008 % Either numeric value for constant flow [m3/s], or csv file with two columns: time [s], flow [m3/s]
% Roughness
Roughness = 1 % Bed roughness formula:
% 1 = Manning roughness (default, needs: ManningN)
% 2 = Colebrook-White (needs: ks)
ManningN = 0.04 % Manning's 'n' (for Roughness = 1)
ks = 0.36 % Roughness height ks [m] (for Roughness = 2)
% Advanced parameters
ESpir = 1 % effect of spiral flow on bedload transport (default = 1) % radius of streamline curvature[m]
DryFlc = 0.005 % Theshold depth for wetting [m] (default = 0, drying occurs at DRYFLC/2)
QTol = 0.0001 % Tolerance for model flow vs desired flow when setting water level [m3/s] (default = 0.001)
ItMax = 50 % Maximum number of iterations for setting WL (default = 20)
Kappa = 0.4 % Von Karman Constant (default = 0.4)
RhoW = 1000 % Fluid density [kg/m3] (default 1000)
Gravity = 9.81 % Gravitational constant [m/s2] (default = 9.81)
%% =============================== Sediment ===============================
SedSize = 0.027 %SelwynSedFrac.csv % Either numeric D50 for single size [m], or csv file with 3 columns: fraction D50 [m], initial condition SurfaceFi [dimensionless], IC BulkFi [dimensionless]
RhoS = 2650 % Sed density, either single global value or ref to to file containing fractional densities [kg/m3]
Porosity = 0.4 % Porosity of bulk bed sediment [dimensionless]
DA = 0.2 % Active layer thickness [m] (no effect if uniform sediment)
SedThr = 0.007 % Threshold depth for sediment transport [m] (default = 2*DRYFLC)
%% ==================== Bedload transport due to flow =====================
UpwindBedload = 1 % Scheme for calculating bedload at cell edges: 0<=UpwindBedload<=1, 1 = upwind, 0.5 = central (default = 1)
% Transport formula
STFormula = 1 % Sediment transport formula:
% 1 = Meyer-Peter-Muller (needs: TauCrit, MPMcoef, MPMexponent)
% 2 = Wilcock and Crowe
ThetaCrit = 0.047 % Critical shields stress for transport (for STFormula = 1). Possible values:
% 0.047 = original MPM '48 and also Wong and Parker 2006 eq. 22 (default)
% 0.0495 = correction suggested in Wong and Parker 2006 eq. 24
MPMcoef = 8.0 % Coefficient in MPM formula possible values are:
% 8 = original coefficient in Meyer-Peter and Muller 1948
% 4.93 = correction suggested in Wong and Parker 2006 eq. 22 (default)
% 3.97 = correction suggested in Wong and Parker 2006 eq. 24
MPMexponent = 1.5 % Coefficient in MPM formula possible values are:
% 1.5 = original MPM '48 and also Wong and Parker 2006 eq. 24
% 1.6 = correction suggested in Wong and Parker 2006 eq. 22 (default)
% Hiding and exposure
HidExp = 0 % Hiding and exposure formulation
% 0 = No hiding or exposure correction
% 1 = Ashida & Michiue formulation
% 2 = Wilcock and Crowe (automatically selected if STFormula = 2)
% 3 = Parker Klingeman and McLean (needs: Gamma)
Gamma = 0.8 % Gamma exponent for Parker Klingeman & McLean hiding function (for HidExp = 3)
%% ========= Transverse bed slope effects on sediment transport ===========
BedSlope = 1 % Bed slope formulation (default = 0)
% 0 = No bed slope formulation
% 1 = General transverse bed slope formula of the form shown in Sekine & Parker 1992 (needs: BetaStar, m)
% 2 = Talmon et al 1995 bed slope formulation
BetaStar = 1.43 % Transverse slope coefficient (for BedSlope = 1)
m = 0.5 % Transverse slope exponent (for BedSlope = 1)
Ash = 9 % Parameter for Talmon et al bed slope formulation (default = 9, for BedSlope = 2)
Bsh = 0.5 % Parameter for Talmon et al bed slope formulation (default = 0.5, for BedSlope = 2)
Csh = 0.3 % Parameter for Talmon et al bed slope formulation (default = 0.3, for BedSlope = 2)
Dsh = 0.0 % Parameter for Talmon et al bed slope formulation (default = 0.7, for BedSlope = 2)
%% ============================== Bank Erosion ============================
% Bank identification
BankID = 2 % Bank identification approach (default = 0)
% 0 = No bank ID (i.e. everywhere is a bank)
% 1 = Wet/dry interface
% 2 = Transporting/non-transporting
% 3 = Bank height (needs: BHeight)
% 4 = Bank slope (needs: BSlope)
BHeight = 1 % Bank height threshold [m] (for BankId 3)
BSlope = 0.3 % Bank slope threshold [m/m] (for BankId 4)
% Bank erosion stencil
BankTop = 0 % Stencil for locating bank top cell (default = 0)
% 0 = Adjacent cell (no stencil)
BankBot = 3 % Stencil for locating bank bottom cell (default = 0)
% 0 = Adjacent cell (no stencil)
% 1 = Maximum slope curvature within distance and cell limits (needs: BotCellLim, BotCellDist)
% 2 = Lowest cell within distance and cell limits (needs: BotCellLim, BotCellDist)
% 3 = Highest tramsport rate within distance and cell limits (needs: BotCellLim, BotCellDist)
TopCellLim = 3 % Search limit for bank top specified in no of cells (default = 1, i.e. adjacent only)
BotCellLim = 3 % Search limit for bank bottom specified in no of cells (default = 1, i.e. adjacent only)
TopDistLim = 5 % Search limit for bank top specified in distance [m] (IDed bank edge to cell centre, default = 9999, i.e. no distance limit)
BotDistLim = 5 % Search limit for bank bottom specified in distance [m] (IDed bank edge to cell centre, default = 9999, i.e. no distance limit)
% Active bank trigger
BTrigger = 0 % Active bank trigger (default = 0)
% 0 = No trigger (all banks are active)
% 1 = Threshold height trigger (needs: BTHeight)
% 2 = Degrading toe trigger (i.e. active if toe is degrading due to slope & flow effect)
% 3 = Threshold slope trigger (needs: BTSlope)
BTHeight = 1 % Bank height threshold (for BTrigger 1)
BTSlope = 1 % Bank slope threshold (for BTrigger 3)
% Bank erosion flux calculation
BankFlux = 3 % Bank erosion flux calculation approach (default = 0)
% 0 = No Bank erosion flux
% 1 = Flux/dT is proportional to excess slope (needs: Repose, SlipRatio)
% 2 = Flux rate is proportional to bank toe erosion rate (needs: ThetSD)
% 3 = Flux rate is proportional to bank toe transport rate (needs: QsBeRatio)
% 4 = Flux rate is proportional to bank toe transport rate * slope (needs: BErodibility)
Repose = 0.5 % Limiting slope [m/m] (for BankFlux 1)
SlipRatio = 1.0 % Proportion of excess material slipped per timestep [0-1] (default = 1, for BankFlux 1)
ThetSD = 0.2 % Bank erosion flux as a proportion of bank toe erosion rate (default = 0.5, for BankFlux 2)
QsBeRatio = 0.05 % Bank erosion flux as a proportion of bank toe transport rate (for BankFlux 3)
BErodibility = 0.001 % Bank erosion flux as a proportion of bank toe transport rate * slope (for BankFlux 4)
StencilMix = 0 % Mix sediment through active layer when transporting across stencil (default = 0)
% 0 = No mixing: i.e. material is transported from bank top directly to bank toe.
% 1 = Mix: i.e. material is mixed through the active layer of each cell between top and toe.
% Bank updating
StoredBE = 0 % Store bank erosion until top can be lowered to level of toe, see Nicholas 2013 (default = 0)
% 0 = Bank erosion flux applied immediately (default)
% 1 = Erosion part of bank erosion flux stored temporarily until it can be lowered to channel bed
% (note deposition is applied immediately creating temporary mass balance error)
%% =============================== Times ==================================
dT = 60 % Timestep [s]
StartTime = 60000 %0 % [s] (default = 0)
EndTime = 200000 %340000 % [s]
%% ============================== Outputs =================================
DiagInt = 900 % Diagnostics update interval [s] (default = DT, 0 = no diagnostics output)
PlotInt = 720 % Plot update interval [s] (default = DT, 0 = no diagnostics output)
VideoOut = 1 % Output cross-section video. Note: PlotInt must be > 0 for video output.(default = 0 i.e. no video)
CsvInt = 900 % Output interval for CSV files, 0 = no CSV output, >EndTime = Output final geometry (default = 0)