Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: various improvements for doing Lemma 3.9 #51

Merged
merged 1 commit into from
May 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
157 changes: 75 additions & 82 deletions src/Mugen/Cat/HierarchyTheory/Universality/EndomorphismEmbedding.agda
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ import Mugen.Order.Reasoning as Reasoning
-- The Universal Embedding Theorem
-- Section 3.4, Lemma 3.8
--
-- Given a hierarchy theory 'H', a strict order Δ, and a set Ψ, we can
-- Given a hierarchy theory 'H', a poset Δ, and a set Ψ, we can
-- construct a faithful functor 'T : Endos (Fᴴ Δ) → Endos Fᴹᴰ Ψ', where
-- 'Fᴴ' denotes the free H-algebra on Δ, and 'Fᴹᴰ Ψ' denotes the free McBride
-- Hierarchy theory over the endomorphism displacement algebra on 'H (◆ ⊕ Δ ⊕ Δ)'.
Expand All @@ -58,7 +58,7 @@ module Mugen.Cat.HierarchyTheory.Universality.EndomorphismEmbedding

H⟨Δ⁺⟩ : Poset o r
H⟨Δ⁺⟩ = H.M₀ Δ⁺
module H⟨Δ⁺⟩ = Poset H⟨Δ⁺⟩
module H⟨Δ⁺⟩ = Reasoning H⟨Δ⁺⟩

H⟨Δ⁺⟩→-poset : Poset (lsuc (o ⊔ r)) (o ⊔ r)
H⟨Δ⁺⟩→-poset = Endomorphism-poset H Δ⁺
Expand All @@ -84,124 +84,119 @@ module Mugen.Cat.HierarchyTheory.Universality.EndomorphismEmbedding
SOrdᴹᴰ = Eilenberg-Moore SOrd↑ (McBride H⟨Δ⁺⟩→)
module SOrdᴹᴰ = Cat SOrdᴹᴰ

Fᴴ⟨_⟩ : Poset o r → Algebra SOrd H
Fᴴ⟨_⟩ = Functor.F₀ (Free SOrd H)
Fᴴ₀ : Poset o r → Algebra SOrd H
Fᴴ₀ = Functor.F₀ (Free SOrd H)

Fᴴ₁ : {X Y : Poset o r} → Hom X Y → SOrdᴴ.Hom (Fᴴ₀ X) (Fᴴ₀ Y)
Fᴴ₁ = Functor.F₁ (Free SOrd H)

Endoᴴ⟨Δ⟩ : Type (o ⊔ r)
Endoᴴ⟨Δ⟩ = Hom (Fᴴ⟨ Δ ⟩ .fst) (Fᴴ⟨ Δ ⟩ .fst)
Endoᴴ⟨Δ⟩ = Hom (H.M₀ Δ) (H.M₀ Δ)

Fᴹᴰ⟨_⟩ : Poset (lsuc o ⊔ lsuc r) (lsuc o ⊔ lsuc r) → Algebra SOrd↑ (McBride H⟨Δ⁺⟩→)
Fᴹᴰ⟨_⟩ = Functor.F₀ (Free SOrd↑ (McBride H⟨Δ⁺⟩→))
Fᴹᴰ : Poset (lsuc o ⊔ lsuc r) (lsuc o ⊔ lsuc r) → Algebra SOrd↑ (McBride H⟨Δ⁺⟩→)
Fᴹᴰ = Functor.F₀ (Free SOrd↑ (McBride H⟨Δ⁺⟩→))

pattern ⋆ = lift tt
pattern ι₀ α = inl α
pattern ι₁ α = inr (inl α)
pattern ι₂ α = inr (inr α)
-- These patterns and definitions are exported for the naturality proof
-- in another file.

ι₁-inj : ∀ {x y : ⌞ Δ ⌟} → _≡_ {A = ⌞ Δ⁺ ⌟} (ι₁ x) (ι₁ y) → x ≡ y
ι₁-inj = inl-inj ⊙ inr-inj
pattern ⋆ = lift tt

ι₂-inj : ∀ {x y : ⌞ Δ ⌟} → _≡_ {A = ⌞ Δ⁺ ⌟} (ι₂ x) (ι₂ y) → x ≡ y
ι₂-inj = inr-inj ⊙ inr-inj
pattern ι₀ α = inl α

ι₀-hom : Hom ◆ Δ⁺
ι₀-hom .hom = ι₀
ι₀-hom .pres-≤[]-equal α≤β = lift α≤β , λ _ → refl

pattern ι₁ α = inr (inl α)

ι₁-inj : ∀ {x y : ⌞ Δ ⌟} → _≡_ {A = ⌞ Δ⁺ ⌟} (ι₁ x) (ι₁ y) → x ≡ y
ι₁-inj = inl-inj ⊙ inr-inj

ι₁-hom : Hom Δ Δ⁺
ι₁-hom .hom = ι₁
ι₁-hom .pres-≤[]-equal α≤β = lift (lift α≤β) , ι₁-inj

ι₁-monic : SOrd.is-monic ι₁-hom
ι₁-monic g h p = ext λ α → ι₁-inj (p #ₚ α)

pattern ι₂ α = inr (inr α)

ι₂-inj : ∀ {x y : ⌞ Δ ⌟} → _≡_ {A = ⌞ Δ⁺ ⌟} (ι₂ x) (ι₂ y) → x ≡ y
ι₂-inj = inr-inj ⊙ inr-inj


--------------------------------------------------------------------------------
-- Construction of the functor T
-- Section 3.4, Lemma 3.8

σ̅ : Algebra-hom SOrd H Fᴴ⟨ Δ ⟩ Fᴴ⟨ Δ ⟩ → Hom Δ⁺ H⟨Δ⁺⟩
σ̅ σ .hom (ι₀ ⋆) = H.unit.η Δ⁺ # ι₀ ⋆
σ̅ σ .hom (ι₁ α) = H.M₁ ι₁-hom # (σ # (H.unit.η Δ # α))
σ̅ σ .hom (ι₂ α) = H.unit.η _ # ι₂ α
σ̅ : SOrdᴴ.Hom (Fᴴ₀ Δ) (Fᴴ₀ Δ) → Hom Δ⁺ H⟨Δ⁺⟩
σ̅ σ .hom (ι₀ ⋆) = H.η Δ⁺ # ι₀ ⋆
σ̅ σ .hom (ι₁ α) = H.M₁ ι₁-hom # (σ # (H.η Δ # α))
σ̅ σ .hom (ι₂ α) = H.η Δ⁺ # ι₂ α
σ̅ σ .pres-≤[]-equal {ι₀ ⋆} {ι₀ ⋆} _ = H⟨Δ⁺⟩.≤-refl , λ _ → refl
σ̅ σ .pres-≤[]-equal {ι₁ α} {ι₁ β} (lift (lift α≤β)) = Σ-map₂ (ap ι₁ ⊙_) $ (H.M₁ ι₁-hom ∘ σ .morphism ∘ H.unit.η Δ) .pres-≤[]-equal α≤β
σ̅ σ .pres-≤[]-equal {ι₂ α} {ι₂ β} α≤β = H.unit.η Δ⁺ .pres-≤[]-equal α≤β
σ̅ σ .pres-≤[]-equal {ι₁ α} {ι₁ β} (lift (lift α≤β)) =
H⟨Δ⁺⟩.≤[]-map (ap ι₁) $ (H.M₁ ι₁-hom ∘ σ .morphism ∘ H.η Δ) .pres-≤[]-equal α≤β
σ̅ σ .pres-≤[]-equal {ι₂ α} {ι₂ β} α≤β = H.η Δ⁺ .pres-≤[]-equal α≤β

abstract
σ̅-id : σ̅ SOrdᴴ.id ≡ H.unit.η Δ⁺
σ̅-id : σ̅ SOrdᴴ.id ≡ H.η Δ⁺
σ̅-id = ext λ where
(ι₀ α) → refl
(ι₁ α) → sym (H.unit.is-natural Δ Δ⁺ ι₁-hom) #ₚ α
(ι₂ α) → refl

abstract
σ̅-ι
: ∀ (σ : Algebra-hom SOrd H Fᴴ⟨ Δ ⟩ Fᴴ⟨ Δ ⟩)
: ∀ (σ : SOrdᴴ.Hom (Fᴴ₀ Δ) (Fᴴ₀ Δ))
→ (α : ⌞ H.M₀ Δ ⌟)
→ H.M₁ (H.M₁ ι₁-hom) # (H.M₁ (σ .morphism) # (H.M₁ (H.unit.η Δ) # α))
→ H.M₁ (H.M₁ ι₁-homσ .morphism ∘ H.η Δ) # α
≡ H.M₁ (σ̅ σ) # (H.M₁ ι₁-hom # α)
σ̅-ι σ α =
(H.M₁ (H.M₁ ι₁-hom) ∘ H.M₁ (σ .morphism) ∘ H.M₁ (H.unit.η Δ)) # α ≡˘⟨ ap (H.M₁ (H.M₁ ι₁-hom) ∘_) (H.M-∘ _ _) #ₚ α ⟩
(H.M₁ (H.M₁ ι₁-hom) ∘ H.M₁ (σ .morphism ∘ H.unit.η Δ)) # α ≡˘⟨ H.M-∘ _ _ #ₚ α ⟩
H.M₁ (H.M₁ ι₁-hom ∘ σ .morphism ∘ H.unit.η Δ) # α ≡⟨ ap H.M₁ lemma #ₚ α ⟩
H.M₁ (σ̅ σ ∘ ι₁-hom) # α ≡⟨ H.M-∘ _ _ #ₚ α ⟩
H.M₁ (σ̅ σ) # (H.M₁ ι₁-hom # α) ∎
where
lemma : H.M₁ ι₁-hom ∘ σ .morphism ∘ H.unit.η Δ ≡ σ̅ σ ∘ ι₁-hom
lemma = ext λ _ → refl
H.M₁ (H.M₁ ι₁-hom ∘ σ .morphism ∘ H.η Δ) # α ≡⟨ ap (λ m → H.M₁ m # α) $ ext (λ _ → refl) ⟩
H.M₁ (σ̅ σ ∘ ι₁-hom) # α ≡⟨ H.M-∘ _ _ #ₚ α ⟩
H.M₁ (σ̅ σ) # (H.M₁ ι₁-hom # α) ∎

abstract
σ̅-∘ : ∀ (σ δ : Algebra-hom SOrd H Fᴴ⟨ Δ ⟩ Fᴴ⟨ Δ ⟩) → σ̅ (σ SOrdᴴ.∘ δ) ≡ H.mult.η Δ⁺ ∘ H.M₁ (σ̅ σ) ∘ σ̅ δ
σ̅-∘ : ∀ (σ δ : SOrdᴴ.Hom (Fᴴ₀ Δ) (Fᴴ₀ Δ)) → σ̅ (σ SOrdᴴ.∘ δ) ≡ H.μ Δ⁺ ∘ H.M₁ (σ̅ σ) ∘ σ̅ δ
σ̅-∘ σ δ = ext λ where
(ι₀ α) →
H.unit.η Δ⁺ # ι₀ α ≡˘⟨ H.right-ident #ₚ (H.unit.η Δ⁺ # ι₀ α) ⟩
H.mult.η Δ⁺ # (H.unit.η (H.M₀ Δ⁺) # (H.unit.η Δ⁺ # ι₀ α)) ≡⟨ ap# (H.mult.η _) (H.unit.is-natural _ _ (σ̅ σ) #ₚ ι₀ α) ⟩
H.mult.η Δ⁺ # (H.M₁ (σ̅ σ) # (H.unit.η Δ⁺ # ι₀ α)) ∎
H.η Δ⁺ # ι₀ α ≡˘⟨ μ-η H (σ̅ σ) #ₚ ι₀ α ⟩
H.μ Δ⁺ # (H.M₁ (σ̅ σ) # (H.η Δ⁺ # ι₀ α)) ∎
(ι₁ α) →
H.M₁ ι₁-hom # (σ # (δ # (H.unit.η Δ # α))) ≡˘⟨ ap (λ e → H.M₁ ι₁-hom # (σ # e)) (H.left-ident #ₚ _)
H.M₁ ι₁-hom # (σ # (H.mult.η Δ # (H.M₁ (H.unit.η Δ) # (δ # (H.unit.η Δ # α))))) ⟨ ap# (H.M₁ ι₁-hom) (σ .commutes #ₚ _)
H.M₁ ι₁-hom # (H.mult.η _ # (H.M₁ (σ .morphism) # (H.M₁ (H.unit.η Δ) # (δ # (H.unit.η Δ # α))))) ≡˘⟨ H.mult.is-natural _ _ ι₁-hom #ₚ _ ⟩
H.mult.η _ # (H.M₁ (H.M₁ ι₁-hom) # (H.M₁ (σ .morphism) # (H.M₁ (H.unit.η Δ) # (δ # (H.unit.η Δ # α))))) ≡⟨ ap# (H.mult.η _) (σ̅-ι σ (δ # (H.unit.η _ # α))) ⟩
H.mult.η _ # (H.M₁ (σ̅ σ) # (H.M₁ ι₁-hom # (δ # (H.unit.η Δ # α))) ) ∎
H.M₁ ι₁-hom # (σ # (δ # (H.η Δ # α))) ≡˘⟨ ap# (H.M₁ ι₁-hom ∘ σ .morphism) $ H.left-ident #ₚ _ ⟩
H.M₁ ι₁-hom # (σ # (H.μ Δ # (H.M₁ (H.η Δ) # (δ # (H.η Δ # α))))) ≡˘⟨ ap# (H.M₁ ι₁-hom) $ μ-M-∘-Algebraic H σ (H.η Δ) #ₚ _ ⟩
H.M₁ ι₁-hom # (H.μ _ # (H.M₁ (σ .morphism ∘ H.η Δ) # (δ # (H.η Δ # α)))) ≡˘⟨ μ-M-∘-M H ι₁-hom (σ .morphism ∘ H.η Δ) #ₚ _ ⟩
H.μ _ # (H.M₁ (H.M₁ ι₁-homσ .morphism ∘ H.η Δ) # (δ # (H.η Δ # α))) ≡⟨ ap# (H.μ _) (σ̅-ι σ (δ # (H.η _ # α))) ⟩
H.μ _ # (H.M₁ (σ̅ σ) # (H.M₁ ι₁-hom # (δ # (H.η Δ # α)))) ∎
(ι₂ α) →
H.unit.η Δ⁺ # ι₂ α ≡˘⟨ H.right-ident #ₚ _ ⟩
H.mult.η Δ⁺ # (H.unit.η (H.M₀ Δ⁺) # (H.unit.η Δ⁺ # ι₂ α)) ≡⟨ ap# (H.mult.η _) (H.unit.is-natural _ _ (σ̅ σ) #ₚ (ι₂ α)) ⟩
H.mult.η Δ⁺ # (H.M₁ (σ̅ σ) # (H.unit.η Δ⁺ # ι₂ α)) ∎

H.η Δ⁺ # ι₂ α ≡˘⟨ μ-η H (σ̅ σ) #ₚ ι₂ α ⟩
H.μ Δ⁺ # (H.M₁ (σ̅ σ) # (H.η Δ⁺ # ι₂ α)) ∎

T′ : (σ : Algebra-hom SOrd H Fᴴ⟨ Δ ⟩ Fᴴ⟨ Δ ⟩)Algebra-hom SOrd H Fᴴ⟨ Δ⁺ ⟩ Fᴴ⟨ Δ⁺
T′ σ .morphism = H.mult.η Δ⁺ ∘ H.M₁ (σ̅ σ)
T′ : (σ : SOrdᴴ.Hom (Fᴴ₀ Δ) (Fᴴ₀ Δ))SOrdᴴ.Hom (Fᴴ₀ Δ⁺) (Fᴴ₀ Δ⁺)
T′ σ .morphism = H.μ Δ⁺ ∘ H.M₁ (σ̅ σ)
T′ σ .commutes = ext λ α →
H.mult.η Δ⁺ # (H.M₁ (σ̅ σ) # (H.mult.η Δ⁺ # α)) ≡˘⟨ ap# (H.mult.η _) (H.mult.is-natural _ _ (σ̅ σ) #ₚ α) ⟩
H.mult.η Δ⁺ # (H.mult.η (H.M₀ Δ⁺) # (H.M₁ (H.M₁ (σ̅ σ)) # α)) ≡˘⟨ H.mult-assoc #ₚ ((H.M₁ (H.M₁ (σ̅ σ))) # α) ⟩
H.mult.η Δ⁺ # (H.M₁ (H.mult.η Δ⁺) # (H.M₁ (H.M₁ (σ̅ σ)) # α)) ≡˘⟨ ap# (H.mult.η _) (H.M-∘ (H.mult.η _) (H.M₁ (σ̅ σ)) #ₚ α) ⟩
H.mult.η Δ⁺ # (H.M₁ (H.mult.η Δ⁺ ∘ H.M₁ (σ̅ σ)) # α) ∎


T : Functor (Endos SOrdᴴ Fᴴ⟨ Δ ⟩) (Endos SOrdᴹᴰ Fᴹᴰ⟨ Disc Ψ ⟩)
T = functor
where
functor : Functor (Endos SOrdᴴ Fᴴ⟨ Δ ⟩) (Endos SOrdᴹᴰ Fᴹᴰ⟨ Disc Ψ ⟩)
functor .Functor.F₀ _ = tt
functor .Functor.F₁ σ .morphism .hom (α , d) = α , (T′ σ SOrdᴴ.∘ d)
functor .Functor.F₁ σ .morphism .pres-≤[]-equal {α , d1} {β , d2} p =
let d1≤d2 , injr = H⟨Δ⁺⟩→.left-strict-invariant {T′ σ} {d1} {d2} (⋉-snd-invariant p) in
inc (biased (⋉-fst-invariant p) d1≤d2) , λ q i → q i .fst , injr (ap snd q) i
functor .Functor.F₁ σ .commutes = trivial!
functor .Functor.F-id = ext λ α d →
refl , λ β →
H.mult.η _ # (H.M₁ (σ̅ SOrdᴴ.id) # (d # β)) ≡⟨ ap (λ e → H.mult.η _ # (H.M₁ e # (d # β))) σ̅-id ⟩
H.mult.η _ # (H.M₁ (H.unit.η _) # (d # β)) ≡⟨ H.left-ident #ₚ _ ⟩
d # β ∎
functor .Functor.F-∘ σ δ = ext λ α d →
refl , λ β →
H.mult.η _ # (H.M₁ (σ̅ (σ SOrdᴴ.∘ δ)) # (d # β)) ≡⟨ ap (λ e → H.mult.η _ # (H.M₁ e # (d # β))) (σ̅-∘ σ δ) ⟩
H.mult.η _ # (H.M₁ (H.mult.η _ ∘ H.M₁ (σ̅ σ) ∘ σ̅ δ) # (d # β)) ≡⟨ ap (λ e → H.mult.η _ # (e # (d # β))) (H.M-∘ _ _) ⟩
H.mult.η _ # ((H.M₁ (H.mult.η _) ∘ H.M₁ (H.M₁ (σ̅ σ) ∘ σ̅ δ)) # (d # β)) ≡⟨ ap (λ e → H.mult.η _ # ((H.M₁ (H.mult.η _) ∘ e) # (d # β))) (H.M-∘ _ _) ⟩
H.mult.η _ # (H.M₁ (H.mult.η _) # (H.M₁ (H.M₁ (σ̅ σ)) # (H.M₁ (σ̅ δ) # (d # β)))) ≡⟨ H.mult-assoc #ₚ _ ⟩
H.mult.η _ # (H.mult.η _ # (H.M₁ (H.M₁ (σ̅ σ)) # (H.M₁ (σ̅ δ) # (d # β)))) ≡⟨ ap# (H.mult.η _) (H.mult.is-natural _ _ (σ̅ σ) #ₚ _) ⟩
H.mult.η _ # (H.M₁ (σ̅ σ) # (H.mult.η _ # (H.M₁ (σ̅ δ) # (d # β)))) ∎
H.μ Δ⁺ # (H.M₁ (σ̅ σ) # (H.μ Δ⁺ # α)) ≡˘⟨ ap# (H.μ _) $ H.mult.is-natural _ _ (σ̅ σ) #ₚ α ⟩
H.μ Δ⁺ # (H.μ (H.M₀ Δ⁺) # (H.M₁ (H.M₁ (σ̅ σ)) # α)) ≡˘⟨ μ-M-∘-μ H (H.M₁ (σ̅ σ)) #ₚ α ⟩
H.μ Δ⁺ # (H.M₁ (H.μ Δ⁺ ∘ H.M₁ (σ̅ σ)) # α) ∎

T : Functor (Endos SOrdᴴ (Fᴴ₀ Δ)) (Endos SOrdᴹᴰ (Fᴹᴰ₀ (Disc Ψ)))
T .Functor.F₀ _ = tt
T .Functor.F₁ σ .morphism .hom (α , d) = α , (T′ σ SOrdᴴ.∘ d)
T .Functor.F₁ σ .morphism .pres-≤[]-equal {α , d1} {β , d2} p =
let d1≤d2 , injr = H⟨Δ⁺⟩→.left-strict-invariant {T′ σ} {d1} {d2} (⋉-snd-invariant p) in
inc (biased (⋉-fst-invariant p) d1≤d2) , λ q i → q i .fst , injr (ap snd q) i
T .Functor.F₁ σ .commutes = trivial!
T .Functor.F-id = ext λ α d →
refl , λ β →
H.μ _ # (H.M₁ (σ̅ SOrdᴴ.id) # (d # β)) ≡⟨ ap (λ m → H.μ _ # (H.M₁ m # (d # β))) σ̅-id ⟩
H.μ _ # (H.M₁ (H.η _) # (d # β)) ≡⟨ H.left-ident #ₚ _ ⟩
d # β ∎
T .Functor.F-∘ σ δ = ext λ α d →
refl , λ β →
H.μ _ # (H.M₁ (σ̅ (σ SOrdᴴ.∘ δ)) # (d # β)) ≡⟨ ap (λ m → H.μ _ # (H.M₁ m # (d # β))) (σ̅-∘ σ δ) ⟩
H.μ _ # (H.M₁ (H.μ _ ∘ H.M₁ (σ̅ σ) ∘ σ̅ δ) # (d # β)) ≡⟨ μ-M-∘-μ H (H.M₁ (σ̅ σ) ∘ σ̅ δ) #ₚ (d # β) ⟩
H.μ _ # (H.μ _ # (H.M₁ (H.M₁ (σ̅ σ) ∘ σ̅ δ) # (d # β))) ≡⟨ ap# (H.μ _) $ μ-M-∘-M H (σ̅ σ) (σ̅ δ) #ₚ (d # β) ⟩
H.μ _ # (H.M₁ (σ̅ σ) # (H.μ _ # (H.M₁ (σ̅ δ) # (d # β)))) ∎

--------------------------------------------------------------------------------
-- Faithfulness of T
Expand All @@ -211,9 +206,7 @@ module Mugen.Cat.HierarchyTheory.Universality.EndomorphismEmbedding
T-faithful : ∣ Ψ ∣ → preserves-monos H → is-faithful T
T-faithful pt H-preserves-monos {x} {y} {σ} {δ} p =
free-algebra-hom-path H $ H-preserves-monos ι₁-hom ι₁-monic _ _ $ ext λ α →
σ̅ σ # (ι₁ α) ≡˘⟨ H.right-ident #ₚ _ ⟩
H.mult.η _ # (H.unit.η _ # (σ̅ σ # (ι₁ α))) ≡⟨ ap# (H.mult.η _) (H.unit.is-natural _ _ (σ̅ σ) #ₚ _) ⟩
H.mult.η _ # (H.M₁ (σ̅ σ) # (H.unit.η _ # ι₁ α)) ≡⟨ ap snd (p #ₚ (pt , SOrdᴴ.id)) #ₚ _ ⟩
H.mult.η _ # (H.M₁ (σ̅ δ) # (H.unit.η _ # ι₁ α)) ≡˘⟨ ap# (H.mult.η _) (H.unit.is-natural _ _ (σ̅ δ) #ₚ _) ⟩
H.mult.η _ # (H.unit.η _ # (σ̅ δ # (ι₁ α))) ≡⟨ H.right-ident #ₚ _ ⟩
σ̅ δ # (ι₁ α) ∎
σ̅ σ # ι₁ α ≡˘⟨ μ-η H (σ̅ σ) #ₚ ι₁ α ⟩
H.μ _ # (H.M₁ (σ̅ σ) # (H.η _ # ι₁ α)) ≡⟨ ap snd (p #ₚ (pt , SOrdᴴ.id)) #ₚ _ ⟩
H.μ _ # (H.M₁ (σ̅ δ) # (H.η _ # ι₁ α)) ≡⟨ μ-η H (σ̅ δ) #ₚ ι₁ α ⟩
σ̅ δ # ι₁ α ∎
Loading