From aec08fe658eafa569f9cec1c05a72cc5bdfc6c50 Mon Sep 17 00:00:00 2001 From: favonia Date: Tue, 21 Nov 2023 08:30:25 -0600 Subject: [PATCH] style: remove all trailing whitespace --- src/Mugen/Algebra/Displacement.agda | 10 ++-- src/Mugen/Algebra/Displacement/Coimage.agda | 8 +-- .../Algebra/Displacement/FiniteSupport.agda | 4 +- .../Algebra/Displacement/InfiniteProduct.agda | 10 ++-- .../Algebra/Displacement/NearlyConstant.agda | 56 +++++++++---------- .../Algebra/Displacement/NonPositive.agda | 2 +- src/Mugen/Algebra/Displacement/Product.agda | 2 +- src/Mugen/Algebra/OrderedMonoid.agda | 4 +- src/Mugen/Cat/HierarchyTheory/Properties.agda | 2 +- src/Mugen/Data/Coimage.agda | 4 +- src/Mugen/Data/Int.agda | 6 +- src/Mugen/Data/List.agda | 6 +- src/Mugen/Order/Coproduct.agda | 2 +- .../Order/LeftInvariantRightCentered.agda | 6 +- src/Mugen/Order/README.md | 2 +- src/Mugen/Prelude.agda | 8 +-- 16 files changed, 66 insertions(+), 66 deletions(-) diff --git a/src/Mugen/Algebra/Displacement.agda b/src/Mugen/Algebra/Displacement.agda index 9be6398..ba017d2 100644 --- a/src/Mugen/Algebra/Displacement.agda +++ b/src/Mugen/Algebra/Displacement.agda @@ -95,7 +95,7 @@ module _ Iso→is-hlevel 1 eqv $ Σ-is-hlevel 1 (Y.has-is-set _ _) λ _ → Π-is-hlevel² 1 λ _ _ → Y.has-is-set _ _ - where unquoteDecl eqv = declare-record-iso eqv (quote is-displacement-algebra-hom) + where unquoteDecl eqv = declare-record-iso eqv (quote is-displacement-algebra-hom) record Displacement-algebra-hom : Type (o ⊔ o' ⊔ r ⊔ r') where no-eta-equality @@ -152,7 +152,7 @@ displacement-hom-∘ f g .strict-hom = strictly-monotone-∘ (f .strict-hom) (g .strict-hom) displacement-hom-∘ f g .has-is-displacement-hom .is-displacement-algebra-hom.pres-ε = ap (λ x → f # x) (g .pres-ε) - ∙ f .pres-ε + ∙ f .pres-ε displacement-hom-∘ f g .has-is-displacement-hom .is-displacement-algebra-hom.pres-⊗ x y = ap (λ x → f # x) (g .pres-⊗ x y) ∙ f .pres-⊗ (g # x) (g # y) @@ -302,7 +302,7 @@ module _ identity : ∀ (a : ⌞ A ⌟) → α a B.ε ≡ a compat : ∀ (a : ⌞ A ⌟) (x y : ⌞ B ⌟) → α (α a x) y ≡ α a (x B.⊗ y) invariant : ∀ (a : ⌞ A ⌟) (x y : ⌞ B ⌟) → x B.< y → α a x A.< α a y - + is-right-displacement-action-is-prop : (α : ⌞ A ⌟ → ⌞ B ⌟ → ⌞ A ⌟) → is-prop (is-right-displacement-action α) @@ -311,7 +311,7 @@ module _ Σ-is-hlevel 1 (Π-is-hlevel 1 λ _ → A.has-is-set _ _) λ _ → Σ-is-hlevel 1 (Π-is-hlevel³ 1 λ _ _ _ → A.has-is-set _ _) λ _ → Π-is-hlevel³ 1 λ _ _ _ → Π-is-hlevel 1 λ _ → A.<-thin - where unquoteDecl eqv = declare-record-iso eqv (quote is-right-displacement-action) + where unquoteDecl eqv = declare-record-iso eqv (quote is-right-displacement-action) record Right-displacement-action {o r o′ r′} @@ -326,7 +326,7 @@ record Right-displacement-action module _ where open Right-displacement-action - + Right-displacement-action-path : ∀ {o r o′ r′} → {A : Strict-order o r} {B : Displacement-algebra o′ r′} diff --git a/src/Mugen/Algebra/Displacement/Coimage.agda b/src/Mugen/Algebra/Displacement/Coimage.agda index 59f1228..afa42ee 100644 --- a/src/Mugen/Algebra/Displacement/Coimage.agda +++ b/src/Mugen/Algebra/Displacement/Coimage.agda @@ -54,10 +54,10 @@ module Coim-of-displacement-hom -- Algebra _⊗coim_ : X/f → X/f → X/f - _⊗coim_ = Coim-map₂ (λ x y → x X.⊗ y) λ w x y z p q → - (pres-⊗ w y ∙ ap₂ Y._⊗_ p q ∙ sym (pres-⊗ x z)) + _⊗coim_ = Coim-map₂ (λ x y → x X.⊗ y) λ w x y z p q → + (pres-⊗ w y ∙ ap₂ Y._⊗_ p q ∙ sym (pres-⊗ x z)) - εcoim : X/f + εcoim : X/f εcoim = inc X.ε ⊗coim-idl : ∀ x → εcoim ⊗coim x ≡ x @@ -167,7 +167,7 @@ module _ {o r} {X Y : Displacement-algebra o r} {f : Displacement-algebra-hom X (Y-joins.universal (coim≤→Y≤ x≤z) (coim≤→Y≤ y≤z)) joins : has-joins (Coim-of-displacement-hom f) - joins .has-joins.join = coim-join + joins .has-joins.join = coim-join joins .has-joins.joinl {x} {y} = Coim-elim-prop₂ {C = λ x y → x coim≤ (coim-join x y)} (λ x y → X/f.≤-thin) coim-joinl x y diff --git a/src/Mugen/Algebra/Displacement/FiniteSupport.agda b/src/Mugen/Algebra/Displacement/FiniteSupport.agda index 2bc9f90..ac44cc6 100644 --- a/src/Mugen/Algebra/Displacement/FiniteSupport.agda +++ b/src/Mugen/Algebra/Displacement/FiniteSupport.agda @@ -68,7 +68,7 @@ module FinSupport {o r} (𝒟 : Displacement-algebra o r) (cmp : ∀ x y → Tri merge-fin : FinSupportList → FinSupportList → FinSupportList merge-fin xs ys .FinSupportList.support = merge (xs .support) (ys .support) merge-fin xs ys .FinSupportList.is-ε = ap₂ _⊗_ (xs .is-ε) (ys .is-ε) ∙ 𝒟.idl - + empty-fin : FinSupportList empty-fin .support = empty empty-fin .is-ε = refl @@ -126,7 +126,7 @@ module _ where open FinSupport 𝒟 cmp open FinSupportList - + FinSupport⊆NearlyConstant : is-displacement-subalgebra (FiniteSupport 𝒟 cmp) (NearlyConstant 𝒟 cmp) FinSupport⊆NearlyConstant = to-displacement-subalgebra mk where mk : make-displacement-subalgebra _ _ diff --git a/src/Mugen/Algebra/Displacement/InfiniteProduct.agda b/src/Mugen/Algebra/Displacement/InfiniteProduct.agda index 8238064..e16d968 100644 --- a/src/Mugen/Algebra/Displacement/InfiniteProduct.agda +++ b/src/Mugen/Algebra/Displacement/InfiniteProduct.agda @@ -31,13 +31,13 @@ module Inf {o r} (𝒟 : Displacement-algebra o r) where ε∞ _ = ε ⊗∞-associative : ∀ (f g h : Nat → ⌞ 𝒟 ⌟) → (f ⊗∞ (g ⊗∞ h)) ≡ ((f ⊗∞ g) ⊗∞ h) - ⊗∞-associative f g h = funext λ x → 𝒟.associative + ⊗∞-associative f g h = funext λ x → 𝒟.associative ⊗∞-idl : ∀ (f : Nat → ⌞ 𝒟 ⌟) → (ε∞ ⊗∞ f) ≡ f - ⊗∞-idl f = funext λ x → 𝒟.idl + ⊗∞-idl f = funext λ x → 𝒟.idl ⊗∞-idr : ∀ (f : Nat → ⌞ 𝒟 ⌟) → (f ⊗∞ ε∞) ≡ f - ⊗∞-idr f = funext λ x → 𝒟.idr + ⊗∞-idr f = funext λ x → 𝒟.idr -------------------------------------------------------------------------------- -- Algebra @@ -64,7 +64,7 @@ module Inf {o r} (𝒟 : Displacement-algebra o r) where field ≤-everywhere : ∀ n → f n 𝒟.≤ g n <-somewhere : ∃[ n ∈ Nat ] (f n 𝒟.< g n) - + open _inf<_ public inf≤-everywhere : ∀ {f g} → non-strict _inf<_ f g → ∀ n → f n 𝒟.≤ g n @@ -78,7 +78,7 @@ module Inf {o r} (𝒟 : Displacement-algebra o r) where inf<-trans f g h f ⊎-mapl $ λ p → let ys≡[] : ys ≡ [] ys≡[] = bwd-inj $ ap elts (sym p) - + b1≡b2 : b1 ≡ b2 b1≡b2 = ap base p @@ -1055,7 +1055,7 @@ module NearlyConst |> ⊎-mapl $ λ p → let xs≡[] : xs ≡ [] xs≡[] = bwd-inj $ ap elts p - + b1≡b2 : b1 ≡ b2 b1≡b2 = ap base p @@ -1299,7 +1299,7 @@ module NearlyConst index b (fwd (compact b (([] #r x) ◁⊗ xs))) (suc n) ≡⟨ ap (λ ϕ → index b (fwd (compact b ϕ)) (suc n)) (◁⊗-bwd ([] #r x) xs) ⟩ index b (fwd (compact b (([] #r x) ++r bwd xs))) (suc n) ≡⟨ ap (λ ϕ → index b (fwd ϕ) (suc n)) (compact-++r ([] #r x) (bwd xs) (cs #r c) (p ∙ sym cs#r-compact)) ⟩ index b (fwd (compact b (([] #r x) ++r (cs #r c)))) (suc n) ≡⟨ ap (λ ϕ → index b (fwd ϕ) (suc n)) (compact-done (([] #r x) ++r cs) c≠base) ⟩ - index b (fwd ((([] #r x) ++r cs) #r c)) (suc n) ≡⟨ ap (λ ϕ → index b ϕ (suc n)) (fwd-++r ([] #r x) (cs #r c)) ⟩ + index b (fwd ((([] #r x) ++r cs) #r c)) (suc n) ≡⟨ ap (λ ϕ → index b ϕ (suc n)) (fwd-++r ([] #r x) (cs #r c)) ⟩ index b (fwd (cs #r c)) n ≡˘⟨ ap (λ ϕ → index b (fwd ϕ) n) p ⟩ index b (fwd (compact b (bwd xs))) n ≡⟨ index-compact b xs n ⟩ index b xs n ∎ diff --git a/src/Mugen/Algebra/Displacement/NonPositive.agda b/src/Mugen/Algebra/Displacement/NonPositive.agda index be024d7..d741bf3 100644 --- a/src/Mugen/Algebra/Displacement/NonPositive.agda +++ b/src/Mugen/Algebra/Displacement/NonPositive.agda @@ -49,7 +49,7 @@ NonPositive+⊆Int+ = to-displacement-subalgebra subalg where subalg : make-displacement-subalgebra NonPositive+ Int+ subalg .make-displacement-subalgebra.into x = - x subalg .make-displacement-subalgebra.pres-ε = refl - subalg .make-displacement-subalgebra.pres-⊗ = +ℤ-negate + subalg .make-displacement-subalgebra.pres-⊗ = +ℤ-negate subalg .make-displacement-subalgebra.strictly-mono x y = negate-anti-mono y x subalg .make-displacement-subalgebra.inj = negate-inj _ _ diff --git a/src/Mugen/Algebra/Displacement/Product.agda b/src/Mugen/Algebra/Displacement/Product.agda index 43df39f..732a509 100644 --- a/src/Mugen/Algebra/Displacement/Product.agda +++ b/src/Mugen/Algebra/Displacement/Product.agda @@ -163,7 +163,7 @@ module ProductProperties {o r} {𝒟₁ 𝒟₂ : Displacement-algebra o r} ⊗×-right-invariant : ∀ x y z → x ⊗×≤ y → (x ⊗× z) ⊗×≤ (y ⊗× z) ⊗×-right-invariant x y z (both≤ x1≤y1 x2≤y2) = both≤ (𝒟₁-ordered-monoid.right-invariant x1≤y1) (𝒟₂-ordered-monoid.right-invariant x2≤y2) - + -------------------------------------------------------------------------------- -- Joins diff --git a/src/Mugen/Algebra/OrderedMonoid.agda b/src/Mugen/Algebra/OrderedMonoid.agda index c3c509c..5409252 100644 --- a/src/Mugen/Algebra/OrderedMonoid.agda +++ b/src/Mugen/Algebra/OrderedMonoid.agda @@ -29,14 +29,14 @@ record is-ordered-monoid field has-is-monoid : is-monoid ε _⊗_ invariant : ∀ {w x y z} → w ≤ y → x ≤ z → (w ⊗ x) ≤ (y ⊗ z) - + open is-monoid has-is-monoid public left-invariant : ∀ {x y z} → y ≤ z → (x ⊗ y) ≤ (x ⊗ z) left-invariant y≤z = invariant ≤-refl y≤z right-invariant : ∀ {x y z} → x ≤ y → (x ⊗ z) ≤ (y ⊗ z) - right-invariant x≤y = invariant x≤y ≤-refl + right-invariant x≤y = invariant x≤y ≤-refl record Ordered-monoid-on {o r : Level} (A : Poset o r) : Type (o ⊔ lsuc r) where field diff --git a/src/Mugen/Cat/HierarchyTheory/Properties.agda b/src/Mugen/Cat/HierarchyTheory/Properties.agda index a8af376..9ccd2fa 100644 --- a/src/Mugen/Cat/HierarchyTheory/Properties.agda +++ b/src/Mugen/Cat/HierarchyTheory/Properties.agda @@ -91,7 +91,7 @@ module _ {o r} (H : Hierarchy-theory o r) (Δ : Strict-order o r) (Ψ : Set (lsu ι₁-monic g h p = ext λ α → inl-inj (inr-inj (p #ₚ α)) - + -------------------------------------------------------------------------------- -- Construction of the functor T -- Section 3.4, Lemma 3.8 diff --git a/src/Mugen/Data/Coimage.agda b/src/Mugen/Data/Coimage.agda index a15011c..986b1a6 100644 --- a/src/Mugen/Data/Coimage.agda +++ b/src/Mugen/Data/Coimage.agda @@ -127,7 +127,7 @@ Coim-map₂ : ∀ {f : A → B} → Coim f → Coim f → Coim f Coim-map₂ h h-pres = Coim-rec₂ squash (λ x y → inc (h x y)) - (λ w x y z p q → glue (h w y) (h x z) (h-pres w x y z p q)) + (λ w x y z p q → glue (h w y) (h x z) (h-pres w x y z p q)) module Coim-Path (f : A → B) (B-set : is-set B) where @@ -157,4 +157,4 @@ module Coim-Path (f : A → B) (B-set : is-set B) where Coim-effectful : ∀ {x y} → Path (Coim f) (inc x) (inc y) → f x ≡ f y Coim-effectful = Coim-path - + diff --git a/src/Mugen/Data/Int.agda b/src/Mugen/Data/Int.agda index 65e4ea1..d17086f 100644 --- a/src/Mugen/Data/Int.agda +++ b/src/Mugen/Data/Int.agda @@ -336,8 +336,8 @@ diff-negsuc-< zero zero = tt diff-negsuc-< zero (suc y) = <-suc y diff-negsuc-< (suc x) zero = tt diff-negsuc-< (suc x) (suc y) = begin-< - negsuc (suc y) <⟨ -1ℤ-< (negsuc y) ⟩ - negsuc y <⟨ diff-negsuc-< x y ⟩ + negsuc (suc y) <⟨ -1ℤ-< (negsuc y) ⟩ + negsuc y <⟨ diff-negsuc-< x y ⟩ diff x y <∎ diff-left-invariant : ∀ x y z → z < y → diff x y <ℤ diff x z @@ -425,7 +425,7 @@ negate-anti-mono (suc x) (suc y) (s≤s x f = f x {-# INLINE _|>_ #-} over : ∀ {ℓ} {A : Type ℓ} {x y : A} {f : A → A} → (∀ x → f x ≡ x) → f x ≡ f y → x ≡ y -over {x = x} {y = y} p q = sym (p x) ·· q ·· p y +over {x = x} {y = y} p q = sym (p x) ·· q ·· p y