title | document | date | audience | author | toc | toc-depth | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pattern Matching |
P1371R2 |
2020-01-13 |
Evolution |
|
true |
4 |
\pagebreak
- R2
- Modified [Dereference Pattern] to
(*!) pattern
and(*?) pattern
- Modified [Extractor Pattern] to
(extractor!) pattern
and(extractor?) pattern
. - Added reasons for the choice of [
let
rather thanauto
]. - Allowed using [Statements in
inspect
expression].
- Modified [Dereference Pattern] to
- R1
- Modified [Wildcard Pattern] to use
__
(double underscore). - Added new patterns [Case Pattern] and [Binding Pattern].
- Removed
^
from [Expression Pattern]. - Modified [Dereference Pattern] to
*!
and*?
. - Added [Structured Binding Pattern] usage in variable declaration.
- Modified [Wildcard Pattern] to use
- R0
- Merged [@P1260R0] and [@P1308R0]
As algebraic data types gain better support in C++ with facilities such as
tuple
and variant
, the importance of mechanisms to interact with them have
increased. While mechanisms such as apply
and visit
have been added, their
usage is quite complex and limited even for simple cases. Pattern matching is
a widely adopted mechanism across many programming languages to interact with
algebraic data types that can help greatly simplify C++. Examples of programming
languages include text-based languages such as SNOBOL back in the 1960s,
functional languages such as Haskell and OCaml, and "mainstream" languages such
as Scala, Swift, and Rust.
This paper is a result of collaboration between the authors of [@P1260R0] and [@P1308R0]. A joint presentation by the authors of the two proposals was given in EWGI at the San Diego 2018 meeting, with the closing poll: "Should we commit additional committee time to pattern matching?" --- SF: 14, WF: 0, N: 1, WA: 0, SA: 0
Virtually every program involves branching on some predicates applied to a value
and conditionally binding names to some of its components for use in subsequent
logic. Today, C++ provides two types of selection statements: the if
statement
and the switch
statement.
Since switch
statements can only operate on a single integral value and
if
statements operate on an arbitrarily complex boolean expression, there is
a significant gap between the two constructs even in inspection of
the "vocabulary types" provided by the standard library.
In C++17, structured binding declarations [@P0144R2] introduced the ability to
concisely bind names to components of tuple
-like values. The proposed
direction of this paper aims to naturally extend this notion by performing
structured inspection with inspect
statements and expressions. The
goal of inspect
is to bridge the gap between switch
and if
statements
with a declarative, structured, cohesive, and composable
mechanism.
\pagebreak
::: tonytable
switch (x) {
case 0: std::cout << "got zero"; break;
case 1: std::cout << "got one"; break;
default: std::cout << "don't care";
}
inspect (x) {
0: std::cout << "got zero";
1: std::cout << "got one";
__: std::cout << "don't care";
}
:::
::: tonytable
if (s == "foo") {
std::cout << "got foo";
} else if (s == "bar") {
std::cout << "got bar";
} else {
std::cout << "don't care";
}
inspect (s) {
"foo": std::cout << "got foo";
"bar": std::cout << "got bar";
__: std::cout << "don't care";
}
:::
::: tonytable
auto&& [x, y] = p;
if (x == 0 && y == 0) {
std::cout << "on origin";
} else if (x == 0) {
std::cout << "on y-axis";
} else if (y == 0) {
std::cout << "on x-axis";
} else {
std::cout << x << ',' << y;
}
inspect (p) {
[0, 0]: std::cout << "on origin";
[0, y]: std::cout << "on y-axis";
[x, 0]: std::cout << "on x-axis";
[x, y]: std::cout << x << ',' << y;
}
:::
\pagebreak
::: tonytable
struct visitor {
void operator()(int i) const {
os << "got int: " << i;
}
void operator()(float f) const {
os << "got float: " << f;
}
std::ostream& os;
};
std::visit(visitor{strm}, v);
inspect (v) {
<int> i: strm << "got int: " << i;
<float> f: strm << "got float: " << f;
}
:::
struct Shape { virtual ~Shape() = default; };
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };
::: tonytable
virtual int Shape::get_area() const = 0;
int Circle::get_area() const override {
return 3.14 * radius * radius;
}
int Rectangle::get_area() const override {
return width * height;
}
int get_area(const Shape& shape) {
return inspect (shape) {
<Circle> [r] => 3.14 * r * r,
<Rectangle> [w, h] => w * h
}
}
:::
\pagebreak
struct Expr;
struct Neg {
std::shared_ptr<Expr> expr;
};
struct Add {
std::shared_ptr<Expr> lhs, rhs;
};
struct Mul {
std::shared_ptr<Expr> lhs, rhs;
};
struct Expr : std::variant<int, Neg, Add, Mul> {
using variant::variant;
};
namespace std {
template <>
struct variant_size<Expr> : variant_size<Expr::variant> {};
template <std::size_t I>
struct variant_alternative<I, Expr> : variant_alternative<I, Expr::variant> {};
}
::: tonytable
int eval(const Expr& expr) {
struct visitor {
int operator()(int i) const {
return i;
}
int operator()(const Neg& n) const {
return -eval(*n.expr);
}
int operator()(const Add& a) const {
return eval(*a.lhs) + eval(*a.rhs);
}
int operator()(const Mul& m) const {
// Optimize multiplication by 0.
if (int* i = std::get_if<int>(m.lhs.get()); i && *i == 0) {
return 0;
}
if (int* i = std::get_if<int>(m.rhs.get()); i && *i == 0) {
return 0;
}
return eval(*m.lhs) * eval(*m.rhs);
}
};
return std::visit(visitor{}, expr);
}
int eval(const Expr& expr) {
return inspect (expr) {
<int> i => i,
<Neg> [(*?) e] => -eval(e),
<Add> [(*?) l, (*?) r] => eval(l) + eval(r),
// Optimize multiplication by 0.
<Mul> [(*?) <int> 0, __] => 0,
<Mul> [__, (*?) <int> 0] => 0,
<Mul> [(*?) l, (*?) r] => eval(l) * eval(r)
};
}
:::
\pagebreak
::: tonytable
auto const& [topLeft, unused] = getBoundaryRectangle();
auto const& [topBoundary, leftBoundary] = topLeft;
auto const& [[topBoundary, leftBoundary], __] = getBoundaryRectangle();
:::
::: tonytable
enum class Op { Add, Sub, Mul, Div };
Op parseOp(Parser& parser) {
const auto& token = parser.consumeToken();
switch (token) {
case '+': return Op::Add;
case '-': return Op::Sub;
case '*': return Op::Mul;
case '/': return Op::Div;
default: {
std::cerr << "Unexpected " << token;
std::terminate();
}
}
}
enum class Op { Add, Sub, Mul, Div };
Op parseOp(Parser& parser) {
return inspect(parser.consumeToken()) {
'+' => Op::Add,
'-' => Op::Sub,
'*' => Op::Mul,
'/' => Op::Div,
token: {
std::cerr << "Unexpected: " << token;
std::terminate();
}
}
}
:::
\pagebreak
|
inspect constexpr
opt(
init-statementoptcondition)
trailing-return-typeopt{
| pattern guardopt=>
expression,
| pattern guardopt:
statement | ... |}
| guard: |
if (
expression)
Within the parentheses, inspect
is equivalent to switch
and if
statements
except that no conversion nor promotion takes place in evaluating the value
of its condition.
There are two clause variations types inside the inspect
body:
=>
denotes expression yielding a value.:
never yields a value, but instead denotes a statement that is executed in the enclosing context. e.g, areturn
statement will return from the functioninspect
is currently running in.
inspect
is an expression if it's encountered in an expression-only context,
trailing-return-type
is specified, or any =>
clauses are present.
It's a statement otherwise.
When inspect
is executed, its condition is evaluated and matched
in order (first match semantics) against each pattern. If a pattern successfully
matches the value of the condition and the boolean expression in the guard
evaluates to true
(or if there is no guard at all), control is passed to the
statement or expression following the matched pattern label. If the guard
expression evaluates to false
, control flows to the subsequent pattern.
If no pattern matches, none of the statements or expressions specified are executed.
In that case, if inspect
is a statment - control is passed to the next statement.
If it's an expression, the behavor is undefined. Additionally, if a :
clause of
the inspect
expression does not stop execution of the function, the behaviour is
undefined.
\pagebreak
The wildcard pattern has the form:
|
__
and matches any value v
.
int v = /* ... */;
inspect (v) {
__: std::cout << "ignored";
// ^^ wildcard pattern
}
This paper adopts the wildcard identifier __
, preferred as an example
spelling in [@P1110R0]. The authors of this paper attempted to reserve
_
for wildcard purposes in [@P1469R0] but consensus in EWG was firmly
against this option.
The identifier pattern has the form:
| identifier
and matches any value v
. The identifier behaves as an lvalue
referring to v
, and is in scope from its point of declaration until
the end of the statement following the pattern label.
int v = /* ... */;
inspect (v) {
x: std::cout << x;
// ^ identifier pattern
}
[If the identifier pattern is used at the top-level,
it has the same syntax as a goto
label.]{.note}
The expression pattern has the form:
| constant-expression
and matches value v
if a call to member e.match(v)
or else a non-member
ADL-only match(e, v)
is contextually convertible to bool
and evaluates
to true
where e
is constant-expression.
The default behavior of match(x, y)
is x == y
.
int v = /* ... */;
inspect (v) {
0: std::cout << "got zero";
1: std::cout << "got one";
// ^ expression pattern
}
enum class Color { Red, Green, Blue };
Color color = /* ... */;
inspect (color) {
Color::Red: // ...
Color::Green: // ...
Color::Blue: // ...
// ^^^^^^^^^^^ expression pattern
}
[By default, an identifier is an [Identifier Pattern]. See [Case Pattern] and [Binding Pattern].]{.note}
static constexpr int zero = 0, one = 1;
int v = 42;
inspect (v) {
zero: std::cout << zero;
// ^^^^ identifier pattern
}
// prints: 42
The structured binding pattern has the following two forms:
|
[
_pattern_0,
_pattern_1,
...,
_pattern_N]
|[
_designator_0:
_pattern_0,
_designator_1:
_pattern_1,
...,
_designator_N: _pattern_N]
The first form matches value v
if each patterni matches the i^th^
component of v
. The components of v
are given by the structured binding
declaration: auto&& [__e
0, __e
1,
..., __e
N] = v;
where each
__e
i are unique exposition-only identifiers.
std::pair<int, int> p = /* ... */;
inspect (p) {
[0, 0]: std::cout << "on origin";
[0, y]: std::cout << "on y-axis";
// ^ identifier pattern
[x, 0]: std::cout << "on x-axis";
// ^ expression pattern
[x, y]: std::cout << x << ',' << y;
// ^^^^^^ structured binding pattern
}
\pagebreak
The second form matches value v
if each patterni matches the direct
non-static data member of v
named identifier from each designatori.
If an identifier from any designatori does not refer to a direct
non-static data member of v
, the program is ill-formed.
struct Player { std::string name; int hitpoints; int coins; };
void get_hint(const Player& p) {
inspect (p) {
[.hitpoints: 1]: std::cout << "You're almost destroyed. Give up!\n";
[.hitpoints: 10, .coins: 10]: std::cout << "I need the hints from you!\n";
[.coins: 10]: std::cout << "Get more hitpoints!\n";
[.hitpoints: 10]: std::cout << "Get more ammo!\n";
[.name: n]: {
if (n != "The Bruce Dickenson") {
std::cout << "Get more hitpoints and ammo!\n";
} else {
std::cout << "More cowbell!\n";
}
}
}
}
[Unlike designated initializers, the order of the designators need not be the same as the declaration order of the members of the class.]{.note}
The alternative pattern has the following forms:
|
< auto >
pattern |<
concept>
pattern |<
type>
pattern |<
constant-expression>
pattern
Let v
be the value being matched and V
be std::remove_cvref_t<decltype(v)>
.\newline
Let Alt
be the entity inside the angle brackets.
Case 1: std::variant
-like
If std::variant_size_v<V>
is well-formed and evaluates to an integral,
the alternative pattern matches v
if Alt
is compatible with the current
index of v
and pattern matches the active alternative of v
.
Let I
be the current index of v
given by a member v.index()
or else
a non-member ADL-only index(v)
. The active alternative of v
is given by
std::variant_alternative_t<I, V>&
initialized by a member v.get<I>()
or
else a non-member ADL-only get<I>(v)
.
Alt
is compatible with I
if one of the following four cases is true:
Alt
isauto
Alt
is a concept andstd::variant_alternative_t<I, V>
satisfies the concept.Alt
is a type andstd::is_same_v<Alt, std::variant_alternative_t<I, V>>
istrue
Alt
is a constant-expression that can be used in aswitch
and is the same value asI
.
::: tonytable
std::visit([&](auto&& x) {
strm << "got auto: " << x;
}, v);
inspect (v) {
<auto> x: strm << "got auto: " << x;
}
std::visit([&](auto&& x) {
using X = std::remove_cvref_t<decltype(x)>;
if constexpr (C1<X>()) {
strm << "got C1: " << x;
} else if constexpr (C2<X>()) {
strm << "got C2: " << x;
}
}, v);
inspect (v) {
<C1> c1: strm << "got C1: " << c1;
<C2> c2: strm << "got C2: " << c2;
}
std::visit([&](auto&& x) {
using X = std::remove_cvref_t<decltype(x)>;
if constexpr (std::is_same_v<int, X>) {
strm << "got int: " << x;
} else if constexpr (
std::is_same_v<float, X>) {
strm << "got float: " << x;
}
}, v);
inspect (v) {
<int> i: strm << "got int: " << i;
<float> f: strm << "got float: " << f;
}
std::variant<int, int> v = /* ... */;
std::visit([&](int x) {
strm << "got int: " << x;
}, v);
std::variant<int, int> v = /* ... */;
inspect (v) {
<int> x: strm << "got int: " << x;
}
std::variant<int, int> v = /* ... */;
std::visit([&](auto&& x) {
switch (v.index()) {
case 0: {
strm << "got first: " << x; break;
}
case 1: {
strm << "got second: " << x; break;
}
}
}, v);
std::variant<int, int> v = /* ... */;
inspect (v) {
<0> x: strm << "got first: " << x;
<1> x: strm << "got second: " << x;
}
:::
\pagebreak
Case 2: std::any
-like
|
<
type>
pattern
If Alt
is a type and there exists a valid non-member ADL-only
any_cast<Alt>(&v)
, let p
be its result. The alternative pattern
matches if p
contextually converted to bool
evaluates to true
,
and pattern matches *p
.
::: tonytable
std::any a = 42;
if (int* i = any_cast<int>(&a)) {
std::cout << "got int: " << *i;
} else if (float* f = any_cast<float>(&a)) {
std::cout << "got float: " << *f;
}
std::any a = 42;
inspect (a) {
<int> i: std::cout << "got int: " << i;
<float> f: std::cout << "got float: " << f;
}
:::
Case 3: Polymorphic Types
|
<
type>
pattern
If Alt
is a type and std::is_polymorphic_v<V>
is true
, let p
be
dynamic_cast<Alt'*>(&v)
where Alt'
has the same cv-qualifications as
decltype(&v)
. The alternative pattern matches if p
contextually converted
to bool
evaluates to true
, and pattern matches *p
.
While the semantics of the pattern is specified in terms of dynamic_cast
,
[@N3449] describes techniques involving vtable pointer caching and hash conflict
minimization that are implemented in the [@Mach7] library, as well as mentions
of further opportunities available for a compiler intrinsic.
Given the following definition of a Shape
class hierarchy:
struct Shape { virtual ~Shape() = default; };
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };
::: tonytable
virtual int Shape::get_area() const = 0;
int Circle::get_area() const override {
return 3.14 * radius * radius;
}
int Rectangle::get_area() const override {
return width * height;
}
int get_area(const Shape& shape) {
inspect (shape) {
<Circle> [r]: return 3.14 * r * r;
<Rectangle> [w, h]: return w * h;
}
}
:::
\pagebreak
The parenthesized pattern has the form:
|
(
pattern)
and matches value v
if pattern matches v
.
std::variant<Point, /* ... */> v = /* ... */;
inspect (v) {
<Point> ([x, y]): // ...
// ^^^^^^^^ parenthesized pattern
}
The case pattern has the form:
|
case
pattern
and matches value v
if pattern matches v
with [Identifier Pattern]
recursively interpreted as id-expression.
[An inner [Binding Pattern] would recursively interpret [Identifier Pattern] as binding again]{.note}
enum Color { Red, Green, Blue };
Color color = /* ... */;
inspect (color) {
case Red: // ...
case Green: // ...
// ^^^^^ id-expression
case Blue: // ...
// ^^^^^^^^^ case pattern
}
static constexpr int zero = 0;
int v = /* ... */;
inspect (v) {
case zero: std::cout << "got zero";
// ^^^^ id-expression
case 1: std::cout << "got one";
// ^ expression pattern
case 2: std::cout << "got two";
// ^^^^^^ case pattern
}
\pagebreak
static constexpr int zero = 0, one = 1;
std::pair<int, int> p = /* ... */
inspect (p) {
case [zero, one]: {
// ^^^^ ^^^ id-expression
std::cout << zero << ' ' << one;
// Note that ^^^^ and ^^^ are id-expressions
// that refer to the `static constexpr` variables.
}
}
The binding pattern has the following two forms:
|
let
pattern |let
identifier=
pattern
Both forms match value v
if pattern matches v
.
For the second form, the identifier creates a binding to v
.
The top-level pattern is implicitly the first form. This follows the behavior of structuted bindings where identifiers are interpreted as new bindings rather then _id-expression_s.
[[@P1371R0] had used @
for the syntax of the second form.
EWG gave clear guidance that this would not be accepted.
Other options considered are: %
, $
, :=
, as
and by
.]{.note}
int v = /* ... */;
inspect (v) {
/* let */ x: std::cout << x;
// ^ identifier pattern
}
static constexpr int two = 2;
int v = 42;
inspect (v) {
let 0: std::cout << "got zero";
// ^ expression pattern
let 1: std::cout << "got one";
// ^^^^^ let pattern
let two: std::cout << two;
// ^^^ identifier pattern
}
// prints: 42
\pagebreak
static constexpr int zero = 0, one = 1;
std::pair<int, std::pair<int, int>> p = /* ... */
inspect (p) {
case [zero, let [x, y]]: std::cout << "got zero" << ' ' << x << ' ' << y;
// ^ ^ identifier pattern
case [one, let [x, y]]: std::cout << "got one" << ' ' << x << ' ' << y;
// ^^^^^^^^^^ binding pattern
}
std::variant<Point, /* ... */> v = /* ... */;
inspect (v) {
<Point> (let p = [x, y]): // ...
// ^^^^^^^^^^^^^^ binding pattern
}
The dereference pattern has the following forms:
|
(*!)
pattern |(*?)
pattern
The first form matches value v
if pattern matches *v
. The second form
matches value v
if v
is contextually convertible to bool
and evaluates
to true
, and pattern matches *v
.
struct Node {
int value;
std::unique_ptr<Node> lhs, rhs;
};
void print_leftmost(const Node& node) {
inspect (node) {
[.value: v, .lhs: nullptr]: std::cout << v << '\n';
[.lhs: (*!) l]: print_leftmost(l);
// ^^^^ dereference pattern
}
}
[Refer to [Red-black Tree Rebalancing] for a more complex example.]{.note}
\pagebreak
The extractor pattern has the following two forms:
|
(
constant-expression!
)
pattern |(
constant-expression?
)
pattern
Let c
be the constant-expression. The first form matches value v
if pattern matches e
where e
is the result of a call to member
c.extract(v)
or else a non-member ADL-only extract(c, v)
.
template <typename T>
struct Is {
template <typename Arg>
Arg&& extract(Arg&& arg) const {
static_assert(std::is_same_v<T, std::remove_cvref_t<Arg>>);
return std::forward<Arg>(arg);
}
};
template <typename T>
inline constexpr Is<T> is;
// P0480: `auto&& [std::string s, int i] = f();`
inspect (f()) {
[(is<std::string>!) s, (is<int>!) i]: // ...
// ^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^ extractor pattern
}
For second form, let e
be the result of a call to member c.try_extract(v)
or else a non-member ADL-only try_extract(c, v)
. It matches value v
if e
is contextually convertible to bool
, evaluates to true
,
and pattern matches *e
.
struct Email {
std::optional<std::array<std::string_view, 2>>
try_extract(std::string_view sv) const;
};
inline constexpr Email email;
struct PhoneNumber {
std::optional<std::array<std::string_view, 3>>
try_extract(std::string_view sv) const;
};
inline constexpr PhoneNumber phone_number;
inspect (s) {
(email?) [address, domain]: std::cout << "got an email";
(phone_number?) ["415", __, __]: std::cout << "got a San Francisco phone number";
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ extractor pattern
}
The pattern guard has the form:
|
if (
expression)
Let e
be the result of expression contextually converted to bool
.
If e
is true
, control is passed to the corresponding statement.
Otherwise, control flows to the subsequent pattern.
The pattern guard allows to perform complex tests that cannot be performed within the pattern. For example, performing tests across multiple bindings:
inspect (p) {
[x, y] if (test(x, y)): std::cout << x << ',' << y << " passed";
// ^^^^^^^^^^^^^^^ pattern guard
}
This also diminishes the desire for fall-through semantics within the
statements, an unpopular feature even in switch
statements.
Every pattern is able to determine whether it matches value v
as a boolean
expression in isolation. Let MATCHES
be the condition for which a pattern
matches a value v
. Ignoring any potential optimization opportunities, we're
able to perform the following transformation:
::: tonytable
inspect (v) {
pattern1 if (cond1): stmt1
pattern2: stmt2
// ...
}
if (MATCHES(pattern1, v) && cond1) stmt1
else if (MATCHES(pattern2, v)) stmt2
// ...
:::
inspect constexpr
is then formulated by applying constexpr
to every if
branch.
::: tonytable
inspect constexpr (v) {
pattern1 if (cond1): stmt1
pattern2: stmt2
// ...
}
if constexpr (MATCHES(pattern1, v) && cond1) stmt1
else if constexpr (MATCHES(pattern2, v)) stmt2
// ...
:::
\pagebreak
inspect
can be declared [[strict]]
for implementation-defined exhaustiveness
and usefulness checking.
Exhaustiveness means that all values of the type of the value being matched
is handled by at least one of the cases. For example, having a __:
case makes
any inspect
statement exhaustive.
Usefulness means that every case handles at least one value of the type of
the value being matched. For example, any case that comes after a __:
case
would be useless.
Warnings for pattern matching [@Warnings] discusses and outlines an algorithm for exhaustiveness and usefulness for OCaml, and is the algorithm used by Rust.
Patterns that cannot fail to match are said to be irrefutable in contrast to refutable patterns which can fail to match. For example, the identifier pattern is irrefutable whereas the expression pattern is refutable.
The distinction is useful in reasoning about which patterns should be allowed
in which contexts. For example, the structured bindings declaration is
conceptually a restricted form of pattern matching. With the introduction of
expression pattern in this paper, some may question whether structured bindings
declaration should be extended for examples such as auto [0, x] = f();
.
This is ultimately a question of whether structured bindings declaration supports refutable patterns or if it is restricted to irrefutable patterns.
\pagebreak
The following is the beginning of an attempt at a syntactic structure.
Add to §8.4 [stmt.select] of ...
\pnum{1}Selection statements choose one of several flows of control.
| selection-statement: |
if constexpr
opt(
init-statementoptcondition)
statement |if constexpr
opt(
init-statementoptcondition)
statementelse
statement |switch (
init-statementoptcondition)
statement | [inspect constexpr
opt(
init-statementoptcondition)
trailing-return-typeopt{
inspect-case-seq}
]{.add}
::: add | inspect-case-seq: | inspect-statement-case-seq | inspect-expression-case-seq
| inspect-statement-case-seq: | inspect-statement-case | inspect-statement-case-seq inspect-statement-case
| inspect-expression-case-seq: | inspect-expression-case | inspect-expression-case-seq
,
inspect-expression-case| inspect-statement-case: | inspect-pattern inspect-guard
opt:
statement| inspect-expression-case: | inspect-pattern inspect-guard
opt=>
assignment-expression| inspect-pattern: | wildcard-pattern | identifier-pattern | expression-pattern | structured-binding-pattern | alternative-pattern | binding-pattern | dereference-pattern | extractor-pattern
| inspect-guard: |
if (
expression)
:::
Change §9.1 [dcl.dcl]
| simple-declaration: | decl-specifier-seq init-declarator-list
opt;
| attribute-specifier-seq decl-specifier-seq init-declarator-list;
| [attribute-specifier-seqoptdecl-specifier-seq ref-qualifieropt[
identifier-list]
initializer;
]{.rm} | [attribute-specifier-seqoptdecl-specifier-seq ref-qualifieroptstructured-binding-pattern initializer;
]{.add}
\pagebreak
The design is intended to be consistent and to naturally extend the notions introduced by structured bindings. That is, The subobjects are referred to rather than being assigned into new variables.
We propose any irrefutable pattern to be allowed in structured binding declaration, as it does not introduce any new behaviour. A separate paper will explore possibility of allowing refutable patterns to be used in declarations.
This proposal introduces a new inspect
statement rather than trying to extend
the switch
statement. [@P0095R0] had proposed extending switch
and received
feedback to "leave switch
alone" in Kona 2015.
The following are some of the reasons considered:
switch
allows thecase
labels to appear anywhere, which hinders the goal of pattern matching in providing structured inspection.- The fall-through semantics of
switch
generally results inbreak
being attached to every case, and is known to be error-prone. switch
is purposely restricted to integrals for guaranteed efficiency. The primary goal of pattern matching in this paper is expressiveness while being at least as efficient as the naively hand-written code.
We considered and decided against the use of the auto
keyword over let
in
Binding Pattern.
In C++, auto
is used to declare new variables and has storge implications.
Our decision is to use let
syntax that will avoid confusion over possible
storage implications for the newly introduced identifiers and highlight the fact
that it creates new __binding__s, rather than __variable__s.
The proposed matching algorithm has first match semantics. The choice of first match is mainly due to complexity. Our overload resolution rules for function declarations are extremely complex and is often a mystery.
Best match via overload resolution for function declarations are absolutely
necessary due to the non-local and unordered nature of declarations.
That is, function declarations live in different files and get pulled in
via mechanisms such as #include
and using
declarations, and there is no
defined order of declarations like Haskell does, for example. If function
dispatching depended on the order of #include
and/or using
declarations
being pulled in from hundreds of files, it would be a complete disaster.
Pattern matching on the other hand do not have this problem because
the construct is local and ordered in nature. That is, all of the candidate
patterns appear locally within inspect (x) { /* ... */ }
which cannot span
across multiple files, and appear in a specified order. This is consistent with
try
/catch
for the same reasons: locality and order.
Consider also the amount of limitations we face in overload resolution due
to the opacity of user-defined types. T*
is related to unique_ptr<T>
as
it is to vector<T>
as far as the type system is concerned. This limitation
will likely be even bigger in a pattern matching context with the amount of
customization points available for user-defined behavior.
We considered the possibility of restricting side-effects within patterns. Specifically whether modifying the value currently being matched in the middle of evaluation should have defined behavior.
The consideration was due to potential optimization opportunities.
bool f(int &); // defined in a different translation unit.
int x = 1;
inspect (x) {
0: std::cout << 0;
1 if (f(x)): std::cout << 1;
2: std::cout << 2;
}
If modifying the value currently being matched has undefined behavior,
a compiler can assume that f
(defined in a different translation unit)
will not change the value of x
. This means that the compiler can generate
code that uses a jump table to determine which of the patterns match.
If on the other hand f
may change the value of x
, the compiler would be
forced to generated code checks the patterns in sequence, since a subsequent
pattern may match the updated value of x
.
The following are illustrations of the two approaches written in C++:
::: tonytable
bool f(int &);
int x = 1;
switch (x) {
case 0: std::cout << 0; break;
case 1: if (f(x)) { std::cout << 1; } break;
case 2: std::cout << 2; break;
}
bool f(int &);
int x = 1;
if (x == 0) std::cout << 0;
else if (x == 1 && f(x)) std::cout << 1;
else if (x == 2) std::cout << 2;
:::
However, we consider this opportunity too niche. Suppose we have a slightly more
complex case: struct S { int x; };
and bool operator==(const S&, const S&);
.
Even if modifying the value being matched has undefined behavior, if the
operator==
is defined in a different translation unit, a compiler cannot do
much more than generate code that checks the patterns in sequence anyway.
There are three popular pattern matching libraries for C++ today: [@Mach7], [@Patterns], and [@SimpleMatch].
While the libraries have been useful for gaining experience with interfaces and implementation, the issue of introducing identifiers, syntactic overhead of the patterns, and the reduced optimization opportunities justify support as a language feature from a usability standpoint.
Many languages provide a wide array of patterns through various syntactic forms. While this is a potential direction for C++, it would mean that every new type of matching requires new syntax to be added to the language. This would result in a narrow set of types being supported through limited customization points.
Matchers and extractors are supported in order to minimize the number of patterns with special syntax. The following are example matchers and extractors that commonly have special syntax in other languages.
+----------------------------+---------------------+
| Matchers / Extractors | Other Languages |
+============================+=====================+
| any_of{1, 2, 3}
| 1 | 2 | 3
|
+----------------------------+---------------------+
| within{1, 10}
| 1..10
|
+----------------------------+---------------------+
| (both!) [[x, 0], [0, y]]
| [x, 0] & [0, y]
|
+----------------------------+---------------------+
| (at!) [p, [x, y]]
| p @ [x, y]
|
+----------------------------+---------------------+
Each of the matchers and extractors can be found in the [Examples] section.
[@P1371R0] had proposed a unary ^
as an "expression introducer". The main
motivation was to leave the design space open for patterns that look like
expressions. For example, many languages spell the alternation pattern with |
,
resulting in a pattern such as 1 | 2
which means "match 1
or 2
".
However, to allow such a pattern a disambiguation mechanism would be required
since 1 | 2
is already a valid expression today.
That paper also included what is called a dereference pattern with the syntax of
*
pattern. There was clear guidance from EWG to change the syntax of this
pattern due to confusion with the existing dereference operator.
As such, the design direction proposed in this paper is to allow expressions
in patterns without an introducer, and to require that new patterns be
syntactically unambiguous with an expression in general.
The following is a flow graph of decisions that need to be made:
If inspect
is used in an expression-only context, then it needs to yield a value.
Originally, [@P1371R0] proposed that an exception be thrown in the case when all patterns
failed to match allowing calling code to catch it and handle it. This approach would have
forced users that are not able to use exceptions to have __
pattern and also
limited compiler ability to optimize the code (due to exception branch present in any expression).
The solution was to allow statement clauses to appear in the inspect
expression
context. This way users have fine control over the behaviour of inspect
.
If exceptions are a preferred way to handle failure to match any patterns, the __
pattern
can be used to capture that and throw a user specified exception. More
importantly, any statement can be executed, such as call to std::terminate
, additional
error handling, or returning from the function with an error code.
The following are few of the optimizations that are worth noting.
Structured binding patterns can be optimized by performing switch
over
the columns with the duplicates removed, rather than the naive approach of
performing a comparison per element. This removes unnecessary duplicate
comparisons that would be performed otherwise. This would likely require some
wording around "comparison elision" in order to enable such optimizations.
The sequence of alternative patterns can be executed in a switch
.
[@N3449] describes techniques involving vtable pointer caching and hash conflict minimization that are implemented in the [@Mach7] library, but also mentions further opportunities available for a compiler solution.
Short-string optimization using a predicate as a discriminator rather than an explicitly stored value. Adapted from Bjarne Stroustrup's pattern matching presentation at Urbana-Champaign 2014 [@PatMatPres].
struct String {
enum Storage { Local, Remote };
int size;
union {
char local[32];
struct { char *ptr; int unused_allocated_space; } remote;
};
// Predicate-based discriminator derived from `size`.
Storage index() const { return size > sizeof(local) ? Remote : Local; }
// Opt into Variant-Like protocol.
template <Storage S>
auto &&get() {
if constexpr (S == Local) return local;
else if constexpr (S == Remote) return remote;
}
char *data();
};
namespace std {
// Opt into Variant-Like protocol.
template <>
struct variant_size<String> : std::integral_constant<std::size_t, 2> {};
template <>
struct variant_alternative<String::Local, String> {
using type = decltype(String::local);
};
template <>
struct variant_alternative<String::Remote, String> {
using type = decltype(String::remote);
};
}
char* String::data() {
inspect (*this) {
<Local> l: return l;
<Remote> r: return r.ptr;
}
// switch (index()) {
// case Local: {
// std::variant_alternative_t<Local, String>& l = get<Local>();
// return l;
// }
// case Remote: {
// std::variant_alternative_t<Remote, String>& r = get<Remote>();
// return r.ptr;
// }
// }
}
A class hierarchy can effectively be closed with an enum
that maintains
the list of its members, and provide efficient dispatching by opting into
the Variant-Like protocol.
A generalized mechanism of pattern is used extensively in LLVM;
llvm/Support/YAMLParser.h
[@YAMLParser] is an example.
struct Shape { enum Kind { Circle, Rectangle } kind; };
struct Circle : Shape {
Circle(int radius) : Shape{Shape::Kind::Circle}, radius(radius) {}
int radius;
};
struct Rectangle : Shape {
Rectangle(int width, int height)
: Shape{Shape::Kind::Rectangle}, width(width), height(height) {}
int width, height;
};
namespace std {
template <>
struct variant_size<Shape> : std::integral_constant<std::size_t, 2> {};
template <>
struct variant_alternative<Shape::Circle, Shape> { using type = Circle; };
template <>
struct variant_alternative<Shape::Rectangle, Shape> { using type = Rectangle; };
}
Shape::Kind index(const Shape& shape) { return shape.kind; }
template <Kind K>
auto&& get(const Shape& shape) {
return static_cast<const std::variant_alternative_t<K, Shape>&>(shape);
}
int get_area(const Shape& shape) {
inspect (shape) {
<Circle> c: return 3.14 * c.radius * c.radius;
<Rectangle> r: return r.width * r.height;
}
// switch (index(shape)) {
// case Shape::Circle: {
// const std::variant_alternative_t<Shape::Circle, Shape>& c =
// get<Shape::Circle>(shape);
// return 3.14 * c.radius * c.radius;
// }
// case Shape::Rectangle: {
// const std::variant_alternative_t<Shape::Rectangle, Shape>& r =
// get<Shape::Rectangle>(shape);
// return r.width * r.height;
// }
// }
}
\pagebreak
The logical-or pattern in other languages is typically spelled
_pattern_0 |
_pattern_1 | ... |
_pattern_N, and matches
value v
if any patterni matches v
.
This provides a restricted form (constant-only) of the logical-or pattern.
template <typename... Ts>
struct any_of : std::tuple<Ts...> {
using tuple::tuple;
template <typename U>
bool match(const U& u) const {
return std::apply([&](const auto&... xs) { return (... || xs == u); }, *this);
}
};
int fib(int n) {
inspect (n) {
x if (x < 0): return 0;
any_of{1, 2}: return n; // 1 | 2
x: return fib(x - 1) + fib(x - 2);
}
}
The range pattern in other languages is typically spelled first..last
,
and matches v
if v
[first, last]
.
struct within {
int first, last;
bool match(int n) const { return first <= n && n <= last; }
};
inspect (n) {
within{1, 10}: { // 1..10
std::cout << n << " is in [1, 10].";
}
__: {
std::cout << n << " is not in [1, 10].";
}
}
\pagebreak
The logical-and pattern in other languages is typically spelled
_pattern_0 &
_pattern_1 & ... &
_pattern_N, and matches v
if all of _pattern_i matches v
.
This extractor emulates binary logical-and with a std::pair
where
both elements are references to value v
.
struct Both {
template <typename U>
std::pair<U&&, U&&> extract(U&& u) const {
return {std::forward<U>(u), std::forward<U>(u)};
}
};
inline constexpr Both both;
inspect (v) {
(both!) [[x, 0], [0, y]]: // ...
}
The binding pattern in other languages is typically spelled
identifier @
pattern, binds identifier to v
and matches if pattern
matches v
. This is a special case of the logical-and pattern
(_pattern_0 &
_pattern_1) where _pattern_0 is an identifier.
That is, identifier &
pattern has the same semantics as
identifier @
pattern, which means we get at
for free from both
above.
inline constexpr at = both;
inspect (v) {
<Point> (at!) [p, [x, y]]: // ...
// ...
}
Dereference patterns frequently come into play with complex patterns using recursive variant types. An example of such a problem is the rebalance operation for red-black trees. Using pattern matching this can be expressed succinctly and in a way that is easily verified visually as having the correct algorithm.
Given the following red-black tree definition:
enum Color { Red, Black };
template <typename T>
struct Node {
void balance();
Color color;
std::shared_ptr<Node> lhs;
T value;
std::shared_ptr<Node> rhs;
};
\pagebreak
The following is what we can write with pattern matching:
template <typename T>
void Node<T>::balance() {
*this = inspect (*this) {
// left-left case
//
// (Black) z (Red) y
// / \ / \
// (Red) y d (Black) x (Black) z
// / \ -> / \ / \
// (Red) x c a b c d
// / \
// a b
[case Black, (*?) [case Red, (*?) [case Red, a, x, b], y, c], z, d]
=> Node{Red, std::make_shared<Node>(Black, a, x, b),
y,
std::make_shared<Node>(Black, c, z, d)},
[case Black, (*?) [case Red, a, x, (*?) [case Red, b, y, c]], z, d] // left-right case
=> Node{Red, std::make_shared<Node>(Black, a, x, b),
y,
std::make_shared<Node>(Black, c, z, d)},
[case Black, a, x, (*?) [case Red, (*?) [case Red, b, y, c], z, d]] // right-left case
=> Node{Red, std::make_shared<Node>(Black, a, x, b),
y,
std::make_shared<Node>(Black, c, z, d)},
[case Black, a, x, (*?) [case Red, b, y, (*?) [case Red, c, z, d]]] // right-right case
=> Node{Red, std::make_shared<Node>(Black, a, x, b),
y,
std::make_shared<Node>(Black, c, z, d)},
self => self // do nothing
};
}
\pagebreak
The following is what we currently need to write:
template <typename T>
void Node<T>::balance() {
if (color != Black) return;
if (lhs && lhs->color == Red) {
if (const auto& lhs_lhs = lhs->lhs; lhs_lhs && lhs_lhs->color == Red) {
// left-left case
//
// (Black) z (Red) y
// / \ / \
// (Red) y d (Black) x (Black) z
// / \ -> / \ / \
// (Red) x c a b c d
// / \
// a b
*this = Node{
Red,
std::make_shared<Node>(Black, lhs_lhs->lhs, lhs_lhs->value, lhs_lhs->rhs),
lhs->value,
std::make_shared<Node>(Black, lhs->rhs, value, rhs)};
return;
}
if (const auto& lhs_rhs = lhs->rhs; lhs_rhs && lhs_rhs->color == Red) {
*this = Node{ // left-right case
Red,
std::make_shared<Node>(Black, lhs->lhs, lhs->value, lhs_rhs->lhs),
lhs_rhs->value,
std::make_shared<Node>(Black, lhs_rhs->rhs, value, rhs)};
return;
}
}
if (rhs && rhs->color == Red) {
if (const auto& rhs_lhs = rhs->lhs; rhs_lhs && rhs_lhs->color == Red) {
*this = Node{ // right-left case
Red,
std::make_shared<Node>(Black, lhs, value, rhs_lhs->lhs),
rhs_lhs->value,
std::make_shared<Node>(Black, rhs_lhs->rhs, rhs->value, rhs->rhs)};
return;
}
if (const auto& rhs_rhs = rhs->rhs; rhs_rhs && rhs_rhs->color == Red) {
*this = Node{ // right-right case
Red,
std::make_shared<Node>(Black, lhs, value, rhs->lhs),
rhs->value,
std::make_shared<Node>(Black, rhs_rhs->lhs, rhs_rhs->value, rhs_rhs->rhs)};
return;
}
}
}
The design of this proposal also accounts for a potential language support
for variant. It achieves this by keeping the alternative pattern flexible
for new extensions via <
new_entity >
pattern.
Consider an extension to union
that allows it to be tagged by an integral,
and has proper lifetime management such that the active alternative need not
be destroyed manually.
// `: type` specifies the type of the underlying tag value.
union U : int { char small[32]; std::vector<char> big; };
We could then allow <
qualified-id >
that refers to a union
alternative to support pattern matching.
U u = /* ... */;
inspect (u) {
<U::small> s: std::cout << s;
<U::big> b: std::cout << b;
}
The main point is that whatever entity is introduced as the discriminator, the presented form of alternative pattern should be extendable to support it.
The benefit of pattern matching for ranges is unclear. While it's possible to
come up with a ranges pattern, e.g., {x, y, z}
to match against a fixed-size
range, it's not clear whether there is a worthwhile benefit.
The typical pattern found in functional languages of matching a range on head and tail doesn't seem to be all that common or useful in C++ since ranges are generally handled via loops rather than recursion.
Ranges likely will be best served by the range adaptors / algorithms, but further investigation is needed.
Thanks to all of the following:
- Yuriy Solodkyy, Gabriel Dos Reis, Bjarne Stroustrup for their prior work on [@N3449], Open Pattern Matching for C++ [@OpenPM], and the [@Mach7] library.
- Pattern matching presentation by Bjarne Stroustrup at Urbana-Champaign 2014. [@PatMatPres]
- Jeffrey Yasskin/JF Bastien for their work on [@P1110R0].
- (In alphabetical order by last name) Dave Abrahams, John Bandela, Agustín Bergé, Ori Bernstein, Matt Calabrese, Alexander Chow, Louis Dionne, Michał Dominiak, Vicente Botet Escribá, Eric Fiselier, Bengt Gustafsson, Zach Laine, Jason Lucas, John Skaller, Bjarne Stroustrup, Tony Van Eerd, and everyone else who contributed to the discussions.
\pagebreak
references:
- id: OpenPM
citation-label: OpenPM
title: "Open Pattern Matching for C++"
author:
- family: Solodkyy given: Yuriy
- family: Reis given: [Gabriel, Dos]
- family: Stroustrup given: Bjarne URL: http://www.stroustrup.com/OpenPatternMatching.pdf
- id: Mach7
citation-label: Mach7
title: "Mach7: Pattern Matching for C++"
author:
- family: Solodkyy given: Yuriy
- family: Reis given: [Gabriel, Dos]
- family: Stroustrup given: Bjarne URL: https://github.com/solodon4/Mach7
- id: PatMatPres
citation-label: PatMatPres
title: ""Pattern Matching for C++" presentation at Urbana-Champaign 2014"
author:
- family: Solodkyy given: Yuriy
- family: Reis given: [Gabriel, Dos]
- family: Stroustrup given: Bjarne
- id: SimpleMatch
citation-label: SimpleMatch
title: "Simple, Extensible C++ Pattern Matching Library"
author:
- family: Bandela given: John URL: https://github.com/jbandela/simple_match
- id: Patterns
citation-label: Patterns
title: "Pattern Matching in C++"
author:
- family: Park given: Michael URL: https://github.com/mpark/patterns
- id: Warnings
citation-label: Warnings
title: "Warnings for pattern matching"
author:
- family: Maranget given: Luc URL: http://moscova.inria.fr/~maranget/papers/warn/index.html
- id : YAMLParser citation-label : YAMLParser URL: http://llvm.org/doxygen/YAMLParser_8h_source.html
- id : SwiftPatterns citation-label : Swift Patterns title : "Swift Reference Manual - Patterns" URL: https://docs.swift.org/swift-book/ReferenceManual/Patterns.html