-
Notifications
You must be signed in to change notification settings - Fork 18
/
create_onnx.py
772 lines (671 loc) · 26.2 KB
/
create_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
from __future__ import print_function
from collections import OrderedDict
import hashlib
import os.path
# import wget
import onnx
from onnx import helper
from onnx import TensorProto
import numpy as np
import sys
import argparse
class DarkNetParser(object):
"""Definition of a parser for DarkNet-based YOLOv3-608 (only tested for this topology)."""
def __init__(self, supported_layers):
"""Initializes a DarkNetParser object.
Keyword argument:
supported_layers -- a string list of supported layers in DarkNet naming convention,
parameters are only added to the class dictionary if a parsed layer is included.
"""
# A list of YOLOv3 layers containing dictionaries with all layer
# parameters:
self.layer_configs = OrderedDict()
self.supported_layers = supported_layers
self.layer_counter = 0
def parse_cfg_file(self, cfg_file_path):
"""Takes the yolov3.cfg file and parses it layer by layer,
appending each layer's parameters as a dictionary to layer_configs.
Keyword argument:
cfg_file_path -- path to the yolov3.cfg file as string
"""
with open(cfg_file_path, 'r') as cfg_file:
remainder = cfg_file.read()
# print(remainder)
while remainder is not None:
layer_dict, layer_name, remainder = self._next_layer(remainder)
if layer_dict is not None:
self.layer_configs[layer_name] = layer_dict
return self.layer_configs
def _next_layer(self, remainder):
"""Takes in a string and segments it by looking for DarkNet delimiters.
Returns the layer parameters and the remaining string after the last delimiter.
Example for the first Conv layer in yolo.cfg ...
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
... becomes the following layer_dict return value:
{'activation': 'leaky', 'stride': 1, 'pad': 1, 'filters': 32,
'batch_normalize': 1, 'type': 'convolutional', 'size': 3}.
'001_convolutional' is returned as layer_name, and all lines that follow in yolo.cfg
are returned as the next remainder.
Keyword argument:
remainder -- a string with all raw text after the previously parsed layer
"""
remainder = remainder.split('[', 1)
if len(remainder) == 2:
remainder = remainder[1]
else:
return None, None, None
remainder = remainder.split(']', 1)
if len(remainder) == 2:
layer_type, remainder = remainder
else:
return None, None, None
if remainder.replace(' ', '')[0] == '#':
remainder = remainder.split('\n', 1)[1]
layer_param_block, remainder = remainder.split('\n\n', 1)
layer_param_lines = layer_param_block.split('\n')[1:]
layer_name = str(self.layer_counter).zfill(3) + '_' + layer_type
layer_dict = dict(type=layer_type)
if layer_type in self.supported_layers:
for param_line in layer_param_lines:
if param_line[0] == '#':
continue
param_type, param_value = self._parse_params(param_line)
layer_dict[param_type] = param_value
self.layer_counter += 1
return layer_dict, layer_name, remainder
def _parse_params(self, param_line):
"""Identifies the parameters contained in one of the cfg file and returns
them in the required format for each parameter type, e.g. as a list, an int or a float.
Keyword argument:
param_line -- one parsed line within a layer block
"""
param_line = param_line.replace(' ', '')
param_type, param_value_raw = param_line.split('=')
param_value = None
if param_type == 'layers':
layer_indexes = list()
for index in param_value_raw.split(','):
layer_indexes.append(int(index))
param_value = layer_indexes
elif isinstance(param_value_raw, str) and not param_value_raw.isalpha():
condition_param_value_positive = param_value_raw.isdigit()
condition_param_value_negative = param_value_raw[0] == '-' and \
param_value_raw[1:].isdigit()
if condition_param_value_positive or condition_param_value_negative:
param_value = int(param_value_raw)
else:
param_value = float(param_value_raw)
else:
param_value = str(param_value_raw)
return param_type, param_value
class MajorNodeSpecs(object):
"""Helper class used to store the names of ONNX output names,
corresponding to the output of a DarkNet layer and its output channels.
Some DarkNet layers are not created and there is no corresponding ONNX node,
but we still need to track them in order to set up skip connections.
"""
def __init__(self, name, channels):
""" Initialize a MajorNodeSpecs object.
Keyword arguments:
name -- name of the ONNX node
channels -- number of output channels of this node
"""
self.name = name
self.channels = channels
self.created_onnx_node = False
if name is not None and isinstance(channels, int) and channels > 0:
self.created_onnx_node = True
class ConvParams(object):
"""Helper class to store the hyper parameters of a Conv layer,
including its prefix name in the ONNX graph and the expected dimensions
of weights for convolution, bias, and batch normalization.
Additionally acts as a wrapper for generating safe names for all
weights, checking on feasible combinations.
"""
def __init__(self, node_name, batch_normalize, conv_weight_dims):
"""Constructor based on the base node name (e.g. 101_convolutional), the batch
normalization setting, and the convolutional weights shape.
Keyword arguments:
node_name -- base name of this YOLO convolutional layer
batch_normalize -- bool value if batch normalization is used
conv_weight_dims -- the dimensions of this layer's convolutional weights
"""
self.node_name = node_name
self.batch_normalize = batch_normalize
assert len(conv_weight_dims) == 4
self.conv_weight_dims = conv_weight_dims
def generate_param_name(self, param_category, suffix):
"""Generates a name based on two string inputs,
and checks if the combination is valid."""
assert suffix
assert param_category in ['bn', 'conv']
assert(suffix in ['scale', 'mean', 'var', 'weights', 'bias'])
if param_category == 'bn':
assert self.batch_normalize
assert suffix in ['scale', 'bias', 'mean', 'var']
elif param_category == 'conv':
assert suffix in ['weights', 'bias']
if suffix == 'bias':
assert not self.batch_normalize
param_name = self.node_name + '_' + param_category + '_' + suffix
return param_name
class UpsampleParams(object):
#Helper class to store the scale parameter for an Upsample node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Upsample),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Upsample layer
value -- the value of the scale input to the Upsample layer as a numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Upsample node."""
param_name = self.node_name + '_' + "scale"
return param_name
class WeightLoader(object):
"""Helper class used for loading the serialized weights of a binary file stream
and returning the initializers and the input tensors required for populating
the ONNX graph with weights.
"""
def __init__(self, weights_file_path):
"""Initialized with a path to the YOLOv3 .weights file.
Keyword argument:
weights_file_path -- path to the weights file.
"""
self.weights_file = self._open_weights_file(weights_file_path)
def load_upsample_scales(self, upsample_params):
"""Returns the initializers with the value of the scale input
tensor given by upsample_params.
Keyword argument:
upsample_params -- a UpsampleParams object
"""
initializer = list()
inputs = list()
name = upsample_params.generate_param_name()
shape = upsample_params.value.shape
data = upsample_params.value
scale_init = helper.make_tensor(
name, TensorProto.FLOAT, shape, data)
scale_input = helper.make_tensor_value_info(
name, TensorProto.FLOAT, shape)
initializer.append(scale_init)
inputs.append(scale_input)
return initializer, inputs
def load_conv_weights(self, conv_params):
"""Returns the initializers with weights from the weights file and
the input tensors of a convolutional layer for all corresponding ONNX nodes.
Keyword argument:
conv_params -- a ConvParams object
"""
initializer = list()
inputs = list()
if conv_params.batch_normalize:
bias_init, bias_input = self._create_param_tensors(
conv_params, 'bn', 'bias')
bn_scale_init, bn_scale_input = self._create_param_tensors(
conv_params, 'bn', 'scale')
bn_mean_init, bn_mean_input = self._create_param_tensors(
conv_params, 'bn', 'mean')
bn_var_init, bn_var_input = self._create_param_tensors(
conv_params, 'bn', 'var')
initializer.extend(
[bn_scale_init, bias_init, bn_mean_init, bn_var_init])
inputs.extend([bn_scale_input, bias_input,
bn_mean_input, bn_var_input])
else:
bias_init, bias_input = self._create_param_tensors(
conv_params, 'conv', 'bias')
initializer.append(bias_init)
inputs.append(bias_input)
conv_init, conv_input = self._create_param_tensors(
conv_params, 'conv', 'weights')
initializer.append(conv_init)
inputs.append(conv_input)
return initializer, inputs
def _open_weights_file(self, weights_file_path):
"""Opens a YOLOv3 DarkNet file stream and skips the header.
Keyword argument:
weights_file_path -- path to the weights file.
"""
weights_file = open(weights_file_path, 'rb')
length_header = 5
np.ndarray(
shape=(length_header, ), dtype='int32', buffer=weights_file.read(
length_header * 4))
return weights_file
def _create_param_tensors(self, conv_params, param_category, suffix):
"""Creates the initializers with weights from the weights file together with
the input tensors.
Keyword arguments:
conv_params -- a ConvParams object
param_category -- the category of parameters to be created ('bn' or 'conv')
suffix -- a string determining the sub-type of above param_category (e.g.,
'weights' or 'bias')
"""
param_name, param_data, param_data_shape = self._load_one_param_type(
conv_params, param_category, suffix)
initializer_tensor = helper.make_tensor(
param_name, TensorProto.FLOAT, param_data_shape, param_data)
input_tensor = helper.make_tensor_value_info(
param_name, TensorProto.FLOAT, param_data_shape)
return initializer_tensor, input_tensor
def _load_one_param_type(self, conv_params, param_category, suffix):
"""Deserializes the weights from a file stream in the DarkNet order.
Keyword arguments:
conv_params -- a ConvParams object
param_category -- the category of parameters to be created ('bn' or 'conv')
suffix -- a string determining the sub-type of above param_category (e.g.,
'weights' or 'bias')
"""
param_name = conv_params.generate_param_name(param_category, suffix)
channels_out, channels_in, filter_h, filter_w = conv_params.conv_weight_dims
if param_category == 'bn':
param_shape = [channels_out]
elif param_category == 'conv':
if suffix == 'weights':
param_shape = [channels_out, channels_in, filter_h, filter_w]
elif suffix == 'bias':
param_shape = [channels_out]
param_size = np.product(np.array(param_shape))
param_data = np.ndarray(
shape=param_shape,
dtype='float32',
buffer=self.weights_file.read(param_size * 4))
param_data = param_data.flatten().astype(float)
return param_name, param_data, param_shape
class GraphBuilderONNX(object):
"""Class for creating an ONNX graph from a previously generated list of layer dictionaries."""
def __init__(self, output_tensors):
"""Initialize with all DarkNet default parameters used creating YOLOv3,
and specify the output tensors as an OrderedDict for their output dimensions
with their names as keys.
Keyword argument:
output_tensors -- the output tensors as an OrderedDict containing the keys'
output dimensions
"""
self.output_tensors = output_tensors
self._nodes = list()
self.graph_def = None
self.input_tensor = None
self.epsilon_bn = 1e-5
self.momentum_bn = 0.99
self.alpha_lrelu = 0.1
self.param_dict = OrderedDict()
self.major_node_specs = list()
self.batch_size = 1
def build_onnx_graph(
self,
layer_configs,
weights_file_path,
verbose=True):
"""Iterate over all layer configs (parsed from the DarkNet representation
of YOLOv3-608), create an ONNX graph, populate it with weights from the weights
file and return the graph definition.
Keyword arguments:
layer_configs -- an OrderedDict object with all parsed layers' configurations
weights_file_path -- location of the weights file
verbose -- toggles if the graph is printed after creation (default: True)
"""
for layer_name in layer_configs.keys():
layer_dict = layer_configs[layer_name]
major_node_specs = self._make_onnx_node(layer_name, layer_dict)
if major_node_specs.name is not None:
self.major_node_specs.append(major_node_specs)
outputs = list()
for tensor_name in self.output_tensors.keys():
output_dims = [self.batch_size, ] + \
self.output_tensors[tensor_name]
# output_dims = self.output_tensors[tensor_name]
output_tensor = helper.make_tensor_value_info(
tensor_name, TensorProto.FLOAT, output_dims)
outputs.append(output_tensor)
inputs = [self.input_tensor]
weight_loader = WeightLoader(weights_file_path)
initializer = list()
# If a layer has parameters, add them to the initializer and input lists.
for layer_name in self.param_dict.keys():
_, layer_type = layer_name.split('_', 1)
params = self.param_dict[layer_name]
if layer_type == 'convolutional':
initializer_layer, inputs_layer = weight_loader.load_conv_weights(
params)
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
elif layer_type == "upsample":
initializer_layer, inputs_layer = weight_loader.load_upsample_scales(
params)
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
del weight_loader
self.graph_def = helper.make_graph(
nodes=self._nodes,
name='YOLOv3-608',
inputs=inputs,
outputs=outputs,
initializer=initializer
)
if verbose:
print(helper.printable_graph(self.graph_def))
model_def = helper.make_model(self.graph_def,
producer_name='NVIDIA TensorRT sample')
return model_def
def _make_onnx_node(self, layer_name, layer_dict):
"""Take in a layer parameter dictionary, choose the correct function for
creating an ONNX node and store the information important to graph creation
as a MajorNodeSpec object.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
layer_type = layer_dict['type']
if self.input_tensor is None:
if layer_type == 'net':
major_node_output_name, major_node_output_channels = self._make_input_tensor(
layer_name, layer_dict)
major_node_specs = MajorNodeSpecs(major_node_output_name,
major_node_output_channels)
else:
raise ValueError('The first node has to be of type "net".')
else:
node_creators = dict()
node_creators['convolutional'] = self._make_conv_node
node_creators['shortcut'] = self._make_shortcut_node
node_creators['route'] = self._make_route_node
node_creators['upsample'] = self._make_upsample_node
if layer_type in node_creators.keys():
major_node_output_name, major_node_output_channels = \
node_creators[layer_type](layer_name, layer_dict)
major_node_specs = MajorNodeSpecs(major_node_output_name,
major_node_output_channels)
else:
print(
'Layer of type %s not supported, skipping ONNX node generation.' %
layer_type)
major_node_specs = MajorNodeSpecs(layer_name,
None)
return major_node_specs
def _make_input_tensor(self, layer_name, layer_dict):
"""Create an ONNX input tensor from a 'net' layer and store the batch size.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
batch_size = layer_dict['batch']
channels = layer_dict['channels']
height = layer_dict['height']
width = layer_dict['width']
self.batch_size = batch_size
input_tensor = helper.make_tensor_value_info(
str(layer_name), TensorProto.FLOAT, [
batch_size, channels, height, width])
self.input_tensor = input_tensor
return layer_name, channels
def _get_previous_node_specs(self, target_index=-1):
"""Get a previously generated ONNX node (skip those that were not generated).
Target index can be passed for jumping to a specific index.
Keyword arguments:
target_index -- optional for jumping to a specific index (default: -1 for jumping
to previous element)
"""
previous_node = None
for node in self.major_node_specs[target_index::-1]:
if node.created_onnx_node:
previous_node = node
break
assert previous_node is not None
return previous_node
def _make_conv_node(self, layer_name, layer_dict):
"""Create an ONNX Conv node with optional batch normalization and
activation nodes.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
previous_node_specs = self._get_previous_node_specs()
inputs = [previous_node_specs.name]
previous_channels = previous_node_specs.channels
kernel_size = layer_dict['size']
stride = layer_dict['stride']
filters = layer_dict['filters']
batch_normalize = False
if 'batch_normalize' in layer_dict.keys(
) and layer_dict['batch_normalize'] == 1:
batch_normalize = True
kernel_shape = [kernel_size, kernel_size]
weights_shape = [filters, previous_channels] + kernel_shape
conv_params = ConvParams(layer_name, batch_normalize, weights_shape)
strides = [stride, stride]
dilations = [1, 1]
weights_name = conv_params.generate_param_name('conv', 'weights')
inputs.append(weights_name)
if not batch_normalize:
bias_name = conv_params.generate_param_name('conv', 'bias')
inputs.append(bias_name)
conv_node = helper.make_node(
'Conv',
inputs=inputs,
outputs=[layer_name],
kernel_shape=kernel_shape,
strides=strides,
auto_pad='SAME_LOWER',
dilations=dilations,
name=layer_name
)
self._nodes.append(conv_node)
inputs = [layer_name]
layer_name_output = layer_name
if batch_normalize:
layer_name_bn = layer_name + '_bn'
bn_param_suffixes = ['scale', 'bias', 'mean', 'var']
for suffix in bn_param_suffixes:
bn_param_name = conv_params.generate_param_name('bn', suffix)
inputs.append(bn_param_name)
batchnorm_node = helper.make_node(
'BatchNormalization',
inputs=inputs,
outputs=[layer_name_bn],
epsilon=self.epsilon_bn,
momentum=self.momentum_bn,
name=layer_name_bn
)
self._nodes.append(batchnorm_node)
inputs = [layer_name_bn]
layer_name_output = layer_name_bn
if layer_dict['activation'] == 'leaky':
layer_name_lrelu = layer_name + '_lrelu'
lrelu_node = helper.make_node(
'LeakyRelu',
inputs=inputs,
outputs=[layer_name_lrelu],
name=layer_name_lrelu,
alpha=self.alpha_lrelu
)
self._nodes.append(lrelu_node)
inputs = [layer_name_lrelu]
layer_name_output = layer_name_lrelu
elif layer_dict['activation'] == 'linear':
pass
else:
print('Activation not supported.')
self.param_dict[layer_name] = conv_params
return layer_name_output, filters
def _make_shortcut_node(self, layer_name, layer_dict):
"""Create an ONNX Add node with the shortcut properties from
the DarkNet-based graph.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
shortcut_index = layer_dict['from']
activation = layer_dict['activation']
assert activation == 'linear'
first_node_specs = self._get_previous_node_specs()
second_node_specs = self._get_previous_node_specs(
target_index=shortcut_index)
assert first_node_specs.channels == second_node_specs.channels
channels = first_node_specs.channels
inputs = [first_node_specs.name, second_node_specs.name]
shortcut_node = helper.make_node(
'Add',
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
self._nodes.append(shortcut_node)
return layer_name, channels
def _make_route_node(self, layer_name, layer_dict):
"""If the 'layers' parameter from the DarkNet configuration is only one index, continue
node creation at the indicated (negative) index. Otherwise, create an ONNX Concat node
with the route properties from the DarkNet-based graph.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
route_node_indexes = layer_dict['layers']
if len(route_node_indexes) == 1:
split_index = route_node_indexes[0]
assert split_index < 0
# Increment by one because we skipped the YOLO layer:
split_index += 1
self.major_node_specs = self.major_node_specs[:split_index]
layer_name = None
channels = None
else:
inputs = list()
channels = 0
for index in route_node_indexes:
if index > 0:
# Increment by one because we count the input as a node (DarkNet
# does not)
index += 1
route_node_specs = self._get_previous_node_specs(
target_index=index)
inputs.append(route_node_specs.name)
channels += route_node_specs.channels
assert inputs
assert channels > 0
route_node = helper.make_node(
'Concat',
axis=1,
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
self._nodes.append(route_node)
return layer_name, channels
def _make_upsample_node(self, layer_name, layer_dict):
"""Create an ONNX Upsample node with the properties from
the DarkNet-based graph.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
upsample_factor = float(layer_dict['stride'])
# Create the scales array with node parameters
scales=np.array([1.0, 1.0, upsample_factor, upsample_factor]).astype(np.float32)
previous_node_specs = self._get_previous_node_specs()
inputs = [previous_node_specs.name]
channels = previous_node_specs.channels
assert channels > 0
upsample_params = UpsampleParams(layer_name, scales)
scales_name = upsample_params.generate_param_name()
# For ONNX opset >= 9, the Upsample node takes the scales array as an input.
inputs.append(scales_name)
upsample_node = helper.make_node(
'Upsample',
mode='nearest',
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
self._nodes.append(upsample_node)
self.param_dict[layer_name] = upsample_params
return layer_name, channels
def generate_md5_checksum(local_path):
"""Returns the MD5 checksum of a local file.
Keyword argument:
local_path -- path of the file whose checksum shall be generated
"""
with open(local_path) as local_file:
data = local_file.read()
return hashlib.md5(data).hexdigest()
def download_file(local_path, link, checksum_reference=None):
"""Checks if a local file is present and downloads it from the specified path otherwise.
If checksum_reference is specified, the file's md5 checksum is compared against the
expected value.
Keyword arguments:
local_path -- path of the file whose checksum shall be generated
link -- link where the file shall be downloaded from if it is not found locally
checksum_reference -- expected MD5 checksum of the file
"""
if not os.path.exists(local_path):
print('Downloading from %s, this may take a while...' % link)
wget.download(link, local_path)
print()
if checksum_reference is not None:
checksum = generate_md5_checksum(local_path)
if checksum != checksum_reference:
raise ValueError(
'The MD5 checksum of local file %s differs from %s, please manually remove \
the file and try again.' %
(local_path, checksum_reference))
return local_path
def arg_parse():
parser = argparse.ArgumentParser(description='YOLO v3 Video Detection Module')
parser.add_argument("--cfg", dest = 'cfgfile', help = "Config file",
default = "cfg/yolov3.cfg", type = str) ## yolov3.cfg yolov3.weights ## yolov3_cls_1.cfg
parser.add_argument("--weights", dest = 'weightsfile', help = "weightsfile",
default = "weights/yolov3.weights", type = str) ## yolov3_cls_1_200.weights ## yolov3_cls_1_final.weights
parser.add_argument("--reso", dest = 'reso', help =
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
default = "416", type = int)
return parser.parse_args()
def main():
args = arg_parse()
cfg_file_path = args.cfgfile
weights_file_path = args.weightsfile
reso = args.reso
if not os.path.exists(cfg_file_path) or not os.path.exists(weights_file_path) :
print("Give Valid Data Paths for Config File and Weights File")
exit()
# These are the only layers DarkNetParser will extract parameters from. The three layers of
# type 'yolo' are not parsed in detail because they are included in the post-processing later:
supported_layers = ['net', 'convolutional', 'shortcut',
'route', 'upsample']
# Create a DarkNetParser object, and the use it to generate an OrderedDict with all
# layer's configs from the cfg file:
parser = DarkNetParser(supported_layers)
layer_configs = parser.parse_cfg_file(cfg_file_path)
# We do not need the parser anymore after we got layer_configs:
del parser
# In above layer_config, there are three outputs that we need to know the output
# shape of (in CHW format):
output_tensor_dims = OrderedDict()
output_tensor_dims['082_convolutional'] = [255, reso//32, reso//32]
output_tensor_dims['094_convolutional'] = [255, reso//16, reso//16]
output_tensor_dims['106_convolutional'] = [255, reso//8, reso//8]
# Create a GraphBuilderONNX object with the known output tensor dimensions:
builder = GraphBuilderONNX(output_tensor_dims)
# Now generate an ONNX graph with weights from the previously parsed layer configurations
# and the weights file:
yolov3_model_def = builder.build_onnx_graph(
layer_configs=layer_configs,
weights_file_path=weights_file_path,
verbose=True)
# Once we have the model definition, we do not need the builder anymore:
del builder
# Perform a sanity check on the ONNX model definition:
onnx.checker.check_model(yolov3_model_def)
# Serialize the generated ONNX graph to this file:
output_file_path = 'yolov3.onnx'
onnx.save(yolov3_model_def, output_file_path)
if __name__ == '__main__':
main()