-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
291 lines (254 loc) · 9.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
'''Some helper functions for PyTorch, including:
- get_mean_and_std: calculate the mean and std value of dataset.
- msr_init: net parameter initialization.
- progress_bar: progress bar mimic xlua.progress.
'''
import os
import sys
import time
import math
import torch
import torch.nn as nn
import torch.nn.init as init
from collections import OrderedDict
import quantization
def enable_calibrate(module):
for name, child in module.named_children():
if isinstance(child, quantization.quantizer.Quantizer):
child.ptq = True
else:
enable_calibrate(child)
return module
def disable_calibrate(module):
for name, child in module.named_children():
if isinstance(child, quantization.quantizer.Quantizer):
child.ptq = False
else:
disable_calibrate(child)
return module
def disable_soft_targets(module):
for name, child in module.named_children():
if isinstance(child, quantization.quantizer.Quantizer):
child.soft_targets = False
else:
disable_soft_targets(child)
return module
class LinearTempDecay:
def __init__(self, t_max: int, rel_start_decay: float = 0.2, start_b: int = 10, end_b: int = 2):
self.t_max = t_max
self.start_decay = rel_start_decay * t_max
self.start_b = start_b
self.end_b = end_b
def __call__(self, t):
"""
Cosine annealing scheduler for temperature b.
:param t: the current time step
:return: scheduled temperature
"""
if t < self.start_decay:
return self.start_b
else:
rel_t = (t - self.start_decay) / (self.t_max - self.start_decay)
return self.end_b + (self.start_b - self.end_b) * max(0.0, (1 - rel_t))
# def calibrate_params(module):
# for name, child in module.named_children():
# if isinstance(child, quantization.quantizer.AdaRoundQuantizer):
# child.soft_targets = False
# else:
# disable_soft_targets(child)
# return module
def calibrate_adaround(module, adaround_iter, b_start, b_end, warmup, trainloader, device):
opt_params = []
for name, child in module.named_modules():
if isinstance(child, quantization.quantizer.AdaRoundQuantizer):
# print('child.alpha: ', child.alpha)
opt_params += [child.alpha]
# print(opt_params)
optimizer = torch.optim.Adam(opt_params)
scheduler = None
temp_decay = LinearTempDecay(adaround_iter, rel_start_decay=warmup,
start_b=b_start, end_b=b_end)
for j in range(adaround_iter):
b = temp_decay(j)
for batch_idx, (inputs, targets) in enumerate(trainloader):
if batch_idx == 10: break
inputs, targets = inputs.to(device), targets.to(device)
outputs = module(inputs)
round_loss = 0
for name, child in module.named_modules():
if isinstance(child, quantization.quantizer.AdaRoundQuantizer):
round_vals = child.get_soft_targets()
round_loss += (1 - ((round_vals - .5).abs() * 2).pow(b)).sum()
optimizer.zero_grad()
round_loss.backward()
optimizer.step()
for name, child in module.named_modules():
if isinstance(child, quantization.quantizer.AdaRoundQuantizer):
child.soft_targets = False
def inplace_linear(linear, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq):
new_layer = quantization.QLinear(ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq,
linear.in_features, linear.out_features,
True if linear.bias is not None else False)
new_layer.weight = linear.weight
print(new_layer.weight.device)
if linear.bias is not None:
new_layer.bias = linear.bias
return new_layer
def inplace_conv(conv, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq):
new_layer = quantization.QConv2d(ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq,
conv.in_channels, conv.out_channels, conv.kernel_size, conv.stride,
conv.padding, conv.dilation, conv.groups,
True if conv.bias is not None else False)
new_layer.weight = conv.weight
if conv.bias is not None:
new_layer.bias = conv.bias
return new_layer
def inplace_conv_bn(conv, bn, total_steps, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq):
new_layer = quantization.QConv2dBn(ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq, total_steps, bn,
conv.in_channels, conv.out_channels, conv.kernel_size, conv.stride,
conv.padding, conv.dilation, conv.groups,
True if conv.bias is not None else False)
new_layer.weight = conv.weight
if conv.bias is not None:
new_layer.bias = conv.bias
return new_layer
def inplace_quantize_layers(module, total_steps, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq):
last_conv_flag = 0
last_conv = None
last_conv_name = None
for name, child in module.named_children():
if isinstance(child, (nn.modules.batchnorm._BatchNorm)):
if last_conv is None:
continue
fused_qconv = inplace_conv_bn(last_conv, child, total_steps, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq)
module._modules[last_conv_name] = fused_qconv
module._modules[name] = nn.Identity()
last_conv = None
last_conv_flag = 0
if last_conv_flag == 1:
qconv = inplace_conv(last_conv, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq)
module._modules[last_conv_name] = qconv
last_conv = None
last_conv_flag = 0
if isinstance(child, nn.Conv2d):
last_conv = child
last_conv_name = name
last_conv_flag = 1
if isinstance(child, nn.Linear):
qlinear = inplace_linear(child, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq)
module._modules[name] = qlinear
else:
inplace_quantize_layers(child, total_steps, ptq, dorefa, Histogram, level, omse, adaround, bias_correction, lsq)
return module
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
# _, term_width = os.popen('stty size', 'r').read().split()
# term_width = int(term_width)
term_width=80
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
def lp_loss(pred, tgt, p=2.0, reduction='none'):
"""
loss function measured in L_p Norm
"""
if reduction == 'none':
return (pred - tgt).abs().pow(p).sum(1).mean()
else:
return (pred - tgt).abs().pow(p).mean()
def add_module_dict(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict