-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinferenceWebapp.py
124 lines (92 loc) · 4.87 KB
/
inferenceWebapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from PIL import Image
import streamlit as st
import torch
from neuralStyleTransfer1 import *
import time
st.set_option('deprecation.showfileUploaderEncoding', False)
stylePath = {
'Vangogh - Starry Night' : r'Images/Style/vangogh.png',
'Kadinsky - Several Circles': r'Images/Style/Kandinsky-Several Circles.png',
'Haring - Dance' : r'Images/Style/Haring-Dance.png',
'Picasso - Weeping Woman' : r'Images/Style/picasso-weeping woman.png',
'Vangogh - Whitefield' : r'Images/Style/Vangogh-whitefield.png',
'Custom Style' : r'Images/Style/Custom Style.jpg'
}
if __name__ == '__main__':
e = None
st.title('Painter for Noobs')
st.sidebar.header('Configurations')
method = st.sidebar.selectbox( 'Select a Method', ['Neural Style Transfer - Traditional', 'Fast style Transfer', 'General Adverserial Networks'])
if method == 'Neural Style Transfer - Traditional':
option = st.sidebar.selectbox( 'Select a Paint Style', ['Vangogh - Starry Night', 'Kadinsky - Several Circles', 'Haring - Dance', 'Picasso - Weeping Woman', 'Vangogh - Whitefield', 'Custom Style'])
if option=='Custom Style':
style_uploaded_file = st.sidebar.file_uploader("Choose an image file", type=["png", 'jpg', 'jpeg', 'tiff'], key="2")
if style_uploaded_file is not None:
im = Image.open(style_uploaded_file).convert('RGB')
im.save(r'Images/Style/Custom Style.jpg', quality=95)
showStyleImage = st.sidebar.checkbox("Want to see the image", key='1')
e = st.sidebar.slider('Epochs', 0, 1000, 300)
stylize = st.sidebar.slider('Stylize Weight')
showStatus = st.sidebar.button('Submit')
if showStyleImage:
style = Image.open(os.path.abspath(stylePath[option])).convert('RGB')
st.sidebar.image(style, caption='Style Image', use_column_width=True)
content_uploaded_file = st.file_uploader("Choose an image file", type=["png", 'jpg', 'jpeg', 'tiff'], key="1")
showContentImage = st.checkbox("Want to see the image", key='2')
if content_uploaded_file is not None:
im = Image.open(content_uploaded_file).convert('RGB')
im.save(r'serverUpload/testContent.jpg', quality=95)
if showContentImage:
st.image(im, caption='Content Image', use_column_width=True)
clicked = st.button('Paint')
if clicked:
startTime = time.time()
#device = ('cuda:0' if torch.cuda.is_available() else 'cpu')
device = 'cpu'
model = models.vgg19(pretrained=True).features
for param in model.parameters():
param.requires_grad = False
model.to(device)
contentImg, styleImg = readImgs(r'serverUpload/testContent.jpg', os.path.abspath(stylePath[option]))
contentImg = convertToTensor(contentImg)
styleImg = convertToTensor(styleImg)
contentFeatures = modelActivation(contentImg, model)
styleFeatures = modelActivation(styleImg, model)
styleWeight = {"conv1_1" : 1.0,
"conv2_1" : 0.8,
"conv3_1" : 0.4,
"conv4_1" : 0.2,
"conv5_1" : 0.1}
styleGram = {layer:gramMatrix(styleFeatures[layer]) for layer in styleFeatures}
content_wt = 100
style_wt = 1e8
epochs = e
target = contentImg.clone().requires_grad_(True).to(device)
optimizer = torch.optim.Adam([target],lr=0.007)
rem = int(epochs/100)
myProgressBar = st.progress(0)
for i in range(epochs):
targetFeatures = modelActivation(target, model)
contentLoss = torch.mean((contentFeatures['conv4_2'] - targetFeatures['conv4_2'])**2)
styleLoss = 0
for layer in styleWeight:
styleGramMatrix = styleGram[layer]
targetGramMatrix = targetFeatures[layer]
_, c, h, w = targetGramMatrix.shape
targetGramMatrix = gramMatrix(targetGramMatrix)
styleLoss += torch.mean(styleWeight[layer]*torch.mean((targetGramMatrix-styleGramMatrix)**2)) / c*h*w
totalLoss = styleLoss + contentLoss
#print("epoch : {} Total Loss : {}".format(i, totalLoss))
optimizer.zero_grad()
totalLoss.backward()
optimizer.step()
if i%rem==0:
myProgressBar.progress(int(i/rem))
trainStyle = convertFromTensor(target)
utils.save_image(target, 'generated1.png')
endTime = time.time()
myProgressBar.empty()
im = Image.open('generated1.png').convert('RGB')
st.image(im, caption='Converted Image')
st.write('Time Taken : ', (endTime-startTime), ' s')