-
Notifications
You must be signed in to change notification settings - Fork 0
/
coherenceModel.py
343 lines (276 loc) · 12.5 KB
/
coherenceModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import time
import copy
from typing import List
from nltk.tokenize import word_tokenize, sent_tokenize
from tqdm import tqdm
from gensim.models import KeyedVectors
import torch
from torch.utils.data import Dataset
from torch import float32, nn
import torch.nn.functional as F
import torch.optim as optimizer
import matplotlib.pyplot as plt
import gensim
import numpy as np
from sklearn.metrics import balanced_accuracy_score, accuracy_score
Word = List[float]
Sentence = List[Word]
Paragraph = List[Sentence]
ParagraphTensor = torch.Tensor
def get_word_embedding_tup(embed, unk_rep, word: str):
return tuple(embed[word] if word in embed.key_to_index else unk_rep)
def get_sentence_embedding_tup(embed, unk_rep, sentence):
return tuple(get_word_embedding_tup(embed, unk_rep, word.lower()) for word in word_tokenize(sentence))
def get_paragraph_embedding_tup(embed, unk_rep, paragraph):
return tuple(get_sentence_embedding_tup(embed, unk_rep, sentence) for sentence in sent_tokenize(paragraph))
def listify_word_embedding(word) -> Word:
return list(word)
def listify_sentence_embedding(sentence) -> Sentence:
return [listify_word_embedding(word) for word in sentence]
def listify_paragraph_embedding(par_embed) -> Paragraph:
return [listify_sentence_embedding(sentence) for sentence in par_embed]
def tensor_of_tupled_par_embed(par_embed) -> ParagraphTensor:
return [torch.FloatTensor(listify_sentence_embedding(sentence)) for sentence in par_embed]
class WindowedParDataset(Dataset):
def __init__(self, paragraphs, labels, embed, window_size=3):
super().__init__()
unk = np.mean(embed.vectors, axis=0)
coherent_windows = set()
incoherent_windows = set()
# sort zip(paragraphs, labels) so the coherent ones are first, that way we never have overlap
def get_second(pl):
_, l = pl
return l
coherence_first_zip = sorted(zip(paragraphs, labels), key=get_second, reverse=True)
for i, (paragraph, is_coherent) in enumerate(coherence_first_zip):
sentences: Sentence = get_paragraph_embedding_tup(embed, unk, paragraph)
num_windows: int = len(sentences) - window_size + 1
if num_windows < 0:
print(f"WARNING: Paragraph {i} did not have enough sentences for window size {window_size}")
continue
for i in range(num_windows):
curr_window: Sentence = sentences[i:i+window_size]
if is_coherent:
coherent_windows.add(curr_window)
elif curr_window not in coherent_windows:
incoherent_windows.add(curr_window)
print(f"Number of coherent windows: {len(coherent_windows)}")
print(f"Number of incoherent windows: {len(incoherent_windows)}")
coherent_windows = [tensor_of_tupled_par_embed(window) for window in coherent_windows]
incoherent_windows = [tensor_of_tupled_par_embed(window) for window in incoherent_windows]
self.data = []
def add_windows_with_label(windows, label):
for window in windows:
self.data.append({
'window': window,
'label': label
})
add_windows_with_label(coherent_windows, 1)
add_windows_with_label(incoherent_windows, 0)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def basic_collate_fn(batch):
"""Collate function for basic setting."""
windows = [i['window'] for i in batch]
labels = torch.IntTensor([i['label'] for i in batch])
return windows, labels
#######################################################################
################################ Model ################################
#######################################################################
class FFNN(nn.Module):
"""Basic feedforward neural network"""
def __init__(
self,
window_size: int,
device
):
super().__init__()
word_vec_length = 50
ffnn_hidden_dim = 100
self.lstm_hidden_size = word_vec_length
self.window_size = window_size
self.device = device
self.lstm = nn.GRU(
word_vec_length,
self.lstm_hidden_size,
batch_first=False,
bidirectional=False,
)
self.lstm_output_dim = self.lstm_hidden_size
self.fc1 = nn.Linear(self.lstm_output_dim * window_size, ffnn_hidden_dim)
self.output = nn.Linear(ffnn_hidden_dim, 1)
nn.init.xavier_uniform_(self.fc1.weight)
for layer_p in self.lstm._all_weights:
for p in layer_p:
if 'weight' in p:
nn.init.uniform_(self.lstm.__getattr__(p), -0.2, 0.2)
def forward(self, windows: List[ParagraphTensor]):
def rnnForward(l_of_seqs):
# l_of_seqs shape: batch length * num_words_per_seq (ragged) * 200
input_lengths = [seq.size(0) for seq in l_of_seqs]
padded_input = nn.utils.rnn.pad_sequence(l_of_seqs) # tensor w/ shape (max_seq_len, batch_len, 200)
total_length = padded_input.size(0)
packed_input = nn.utils.rnn.pack_padded_sequence(
padded_input, input_lengths, batch_first=False, enforce_sorted=False
)
_, hn = self.lstm(packed_input) # shape (max_seq_len, batch_len, lstm_hidden_dim)
return hn[0]
to_be_rnned = [sentence_embed for window in windows for sentence_embed in window]
rnn_embeddings = rnnForward(to_be_rnned)
vs = torch.zeros(
[len(windows), self.lstm_output_dim * self.window_size], # num_windows * length of window vector
dtype=torch.float32
).to(self.device)
for i, rnn_embedding in enumerate(rnn_embeddings):
curr_window_idx = i // self.window_size
sent_idx_in_curr_window = i % self.window_size
curr_sent_embed_start = sent_idx_in_curr_window * self.lstm_output_dim
curr_sent_embed_end = (sent_idx_in_curr_window + 1) * self.lstm_output_dim
vs[curr_window_idx][curr_sent_embed_start : curr_sent_embed_end] = rnn_embedding
vs = F.tanh(self.fc1(vs))
output = torch.transpose(self.output(vs), dim0=0, dim1=1)[0]
return output
#########################################################################
################################ Training ###############################
#########################################################################
def calculate_loss(scores, labels, loss_fn):
return loss_fn(scores, labels.float())
def get_optimizer(net, lr, weight_decay):
return optimizer.Adagrad(net.parameters(), lr=lr, weight_decay=weight_decay)
def get_hyper_parameters():
lr = [0.01]
weight_decay = [Q / 50 for Q in [0.01, 0.1, 0.25, 0.5]]
return lr, weight_decay
def print_grads(model):
for name, param in model.named_parameters():
print(name, param.grad.norm())
def train_model(net, trn_loader, val_loader, optim, pos_weight=None, num_epoch=50, collect_cycle=30,
device='cpu', verbose=True, patience=8, stopping_criteria='loss'):
train_loss, train_loss_ind, val_loss, val_loss_ind = [], [], [], []
num_itr = 0
best_model, best_uar = None, 0
loss_fn = nn.BCEWithLogitsLoss(pos_weight=pos_weight) if pos_weight is not None else nn.BCEWithLogitsLoss()
early_stopper = EarlyStopperLoss(patience) if stopping_criteria == 'loss' else EarlyStopperAcc(patience)
if verbose:
print('------------------------ Start Training ------------------------')
t_start = time.time()
for epoch in range(num_epoch):
# Training:
net.train()
for windows, labels in trn_loader:
num_itr += 1
windows = [[s.to(device) for s in window] for window in windows]
labels = labels.to(device)
optim.zero_grad()
output = net(windows)
loss = calculate_loss(output, labels, loss_fn)
loss.backward()
optim.step()
# print_grads(net)
if num_itr % collect_cycle == 0: # Data collection cycle
train_loss.append(loss.item())
train_loss_ind.append(num_itr)
if verbose:
print('Epoch No. {0}--Iteration No. {1}-- batch loss = {2:.4f}'.format(
epoch + 1,
num_itr,
loss.item()
))
# Validation:
uar, accuracy, loss = get_validation_performance(net, loss_fn, val_loader, device)
val_loss.append(loss)
val_loss_ind.append(num_itr)
if verbose:
print("Validation UAR: {:.4f}".format(uar))
print("Validation accuracy: {:.4f}".format(accuracy))
print("Validation loss: {:.4f}".format(loss))
if uar > best_uar:
best_model = copy.deepcopy(net)
best_uar = uar
if patience is not None and early_stopper.early_stop(
loss if stopping_criteria == 'loss' else uar
):
break
t_end = time.time()
if verbose:
print('Training lasted {0:.2f} minutes'.format((t_end - t_start)/60))
print('------------------------ Training Done ------------------------')
stats = {'train_loss': train_loss,
'train_loss_ind': train_loss_ind,
'val_loss': val_loss,
'val_loss_ind': val_loss_ind,
'accuracy': best_uar,
}
return best_model, stats
def get_predictions(scores: torch.Tensor):
probs = torch.sigmoid(scores)
return torch.IntTensor([1 if prob > 0.5 else 0 for prob in probs])
def get_validation_performance(net, loss_fn, data_loader, device):
net.eval()
y_true = [] # true labels
y_pred = [] # predicted labels
total_loss = [] # loss for each batch
with torch.no_grad():
for windows, labels in data_loader:
windows = [[s.to(device) for s in window] for window in windows]
labels = labels.to(device)
loss = None # loss for this batch
pred = None # predictions for this battch
scores = net(windows)
loss = calculate_loss(scores, labels, loss_fn)
pred = torch.IntTensor(get_predictions(scores)).to(device)
total_loss.append(loss.item())
y_true.append(labels.cpu())
y_pred.append(pred.cpu())
y_true = torch.cat(y_true)
y_pred = torch.cat(y_pred)
uar = balanced_accuracy_score(y_true, y_pred)
accuracy = accuracy_score(y_true, y_pred)
total_loss = sum(total_loss) / len(total_loss)
return uar, accuracy, total_loss
def plot_loss(stats):
"""Plot training loss and validation loss."""
plt.plot(stats['train_loss_ind'], stats['train_loss'], label='Training loss')
plt.plot(stats['val_loss_ind'], stats['val_loss'], label='Validation loss')
plt.legend()
plt.xlabel('Number of iterations')
plt.ylabel('Loss')
plt.show()
class EarlyStopperAcc:
def __init__(self, patience=5):
self.patience = patience
self.iters_below = 0
self.iters_staying_same = 0
self.max_acc = -float("inf")
def early_stop(self, curr_acc):
if curr_acc > self.max_acc:
self.max_acc = curr_acc
self.iters_below = 0
self.iters_staying_same = 0
elif curr_acc == self.max_acc:
self.iters_staying_same += 1
if self.iters_staying_same >= 50:
return True
elif curr_acc < self.max_acc:
self.iters_below += 1
self.iters_staying_same += 1
if self.iters_below >= self.patience or self.iters_staying_same >= 50:
return True
return False
class EarlyStopperLoss:
# Code inspired from https://stackoverflow.com/questions/71998978/early-stopping-in-pytorch u/isle_of_gods
def __init__(self, patience=10):
self.patience = patience
self.iters_since_last_dec = 0
self.min_loss = float("inf")
def early_stop(self, curr_loss):
if curr_loss < self.min_loss:
self.min_loss = curr_loss
self.iters_since_last_dec = 0
elif curr_loss >= self.min_loss:
self.iters_since_last_dec += 1
if self.iters_since_last_dec >= self.patience:
return True
return False