forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
planar_complex_array.cu
628 lines (491 loc) · 22.7 KB
/
planar_complex_array.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Planar Complex Array Example
This example demonstrates the CUTLASS Library's exposure of planar complex GEMM kernels which
execute a batch of matrix products, loading problem sizes and matrix base pointers from arrays
in global memory.
These kernels represent complex matrices by storing the real and imaginary parts of the matrix in
disjoint regions in memory. These real-valued matrices are stored using existing cuBLAS layouts
as either column-major or row-major layouts with a single leading dimension indicating the stride
between columns or rows.
The CUTLASS Library collects multiple template instantiations in a data structure and offers
a BLAS-like dispatch API to invoke the appropriate kernel on the Volta or Turing architectures.
CUTLASS decouples matrix layout from complex transformation, so four possible transformations
are possible on the A and B operands:
n: column-major
c: column-major complex conjugate
t: row-major
h: row-major complex conjugate
To build strictly the planar complex kernels needed for general application, execute the following
CMake command in an empty build directory.
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_*gemm_planar_complex
This builds all planar complex GEMM variants for Volta and Turing architectures.
To build strictly the kernels needed for this example, an even narrower filter string may be
specified as follows. This only builds planar complex GEMMs targeting Tensor Cores for
the 'CN' layout configuration (conjugate A operand with both A and B as column-major).
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_f16_s*gemm_planar_complex_array_f16*cn
$ make 11_planar_complex_array
$ ./examples/11_planar_complex_array/11_planar_complex_array --m=2048 --n=1024 --k=512 --batch=10
*/
#include <iostream>
#include <sstream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/host_tensor_planar_complex.h"
#include "cutlass/util/reference/device/tensor_fill.h"
#include "cutlass/util/reference/device/gemm_planar_complex.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/library/handle.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Result structure
struct Result {
double runtime_ms;
double gflops;
cutlass::Status status;
cudaError_t error;
bool passed;
//
// Methods
//
Result(
double runtime_ms = 0,
double gflops = 0,
cutlass::Status status = cutlass::Status::kSuccess,
cudaError_t error = cudaSuccess
):
runtime_ms(runtime_ms), gflops(gflops), status(status), error(error), passed(true) { }
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
struct Options {
bool help;
cutlass::gemm::GemmCoord problem_size;
int batch_count;
cutlass::complex<float> alpha;
cutlass::complex<float> beta;
bool reference_check;
int iterations;
Options():
help(false),
problem_size({1024, 1024, 1024}),
batch_count(1),
reference_check(true),
iterations(20),
alpha(1),
beta() { }
bool valid() {
return true;
}
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
}
cmd.get_cmd_line_argument("m", problem_size.m());
cmd.get_cmd_line_argument("n", problem_size.n());
cmd.get_cmd_line_argument("k", problem_size.k());
cmd.get_cmd_line_argument("batch", batch_count);
cmd.get_cmd_line_argument("alpha", alpha.real());
cmd.get_cmd_line_argument("alpha_i", alpha.imag());
cmd.get_cmd_line_argument("beta", beta.real());
cmd.get_cmd_line_argument("beta_i", beta.imag());
cmd.get_cmd_line_argument("iterations", iterations);
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "11_planar_complex_array example\n\n"
<< " This example uses the CUTLASS Library to execute Planar Complex Array GEMM computations.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --m=<int> GEMM M dimension\n"
<< " --n=<int> GEMM N dimension\n"
<< " --k=<int> GEMM K dimension\n"
<< " --batch=<int> Number of GEMM operations executed in one batch\n"
<< " --alpha=<f32> Epilogue scalar alpha (real part)\n"
<< " --alpha_i=<f32> Epilogue scalar alpha (imaginary part)\n"
<< " --beta=<f32> Epilogue scalar beta (real part)\n\n"
<< " --beta_i=<f32> Epilogue scalar beta (imaginary part)\n\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n";
out << "\n\nExamples:\n\n"
<< "$ ./examples/11_planar_complex_array/11_planar_complex_array\n\n";
return out;
}
/// Compute performance in GFLOP/s
double gflops(double runtime_s) const {
// Number of real-valued multiply-adds
int64_t fmas = problem_size.product() * batch_count * 4;
// Two flops per multiply-add
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Performance test environment for planar complex
class TestbedPlanarComplex {
public:
// Half-precision input and output
using Element = cutlass::half_t;
// Configurations for layouts and internal computation
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = cutlass::layout::ColumnMajor;
using ElementCompute = float;
using ElementAccumulator = float;
//
// Data members
//
cutlass::library::Handle handle;
cutlass::gemm::GemmCoord problem_size;
int batch_count;
cutlass::DeviceAllocation<Element> tensor_A;
cutlass::DeviceAllocation<Element> tensor_B;
cutlass::DeviceAllocation<Element> tensor_C;
cutlass::DeviceAllocation<Element> tensor_D;
cutlass::DeviceAllocation<Element> tensor_D_ref;
cutlass::DeviceAllocation<void *> ptr_A_real;
cutlass::DeviceAllocation<void *> ptr_A_imag;
cutlass::DeviceAllocation<void *> ptr_B_real;
cutlass::DeviceAllocation<void *> ptr_B_imag;
cutlass::DeviceAllocation<void *> ptr_C_real;
cutlass::DeviceAllocation<void *> ptr_C_imag;
cutlass::DeviceAllocation<void *> ptr_D_real;
cutlass::DeviceAllocation<void *> ptr_D_imag;
//
// Methods
//
TestbedPlanarComplex(
Options const &options
):
problem_size(options.problem_size), batch_count(options.batch_count) {
// Allocate device memory for batched planar complex GEMM
tensor_A.reset(int64_t(problem_size.m()) * problem_size.k() * batch_count * 2);
tensor_B.reset(int64_t(problem_size.k()) * problem_size.n() * batch_count * 2);
tensor_C.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
tensor_D.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
tensor_D_ref.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
ptr_A_real.reset(batch_count);
ptr_A_imag.reset(batch_count);
ptr_B_real.reset(batch_count);
ptr_B_imag.reset(batch_count);
ptr_C_real.reset(batch_count);
ptr_C_imag.reset(batch_count);
ptr_D_real.reset(batch_count);
ptr_D_imag.reset(batch_count);
}
void initialize() {
uint64_t seed = 1073;
// Use small integers to simplify correctness checking
int scope_max = 6;
int scope_min = -6;
cutlass::reference::device::BlockFillRandomUniform(
tensor_A.get(), tensor_A.size(), seed, Element(scope_max), Element(scope_min), 0);
cutlass::reference::device::BlockFillRandomUniform(
tensor_B.get(), tensor_B.size(), seed * 2019, Element(scope_max), Element(scope_min), 0);
cutlass::reference::device::BlockFillRandomUniform(
tensor_C.get(), tensor_C.size(), seed * 2020, Element(scope_max), Element(scope_min), 0);
}
Result profile(Options const &options) {
Result result;
initialize();
Element *ptr_A = tensor_A.get();
Element *ptr_B = tensor_B.get();
Element *ptr_C = tensor_C.get();
Element *ptr_D = tensor_D.get();
int64_t batch_stride_A = int64_t(problem_size.m()) * problem_size.k() * 2;
int64_t batch_stride_B = int64_t(problem_size.k()) * problem_size.n() * 2;
int64_t batch_stride_C = int64_t(problem_size.m()) * problem_size.n() * 2;
int64_t batch_stride_D = int64_t(problem_size.m()) * problem_size.n() * 2;
typename LayoutA::Stride::Index lda = LayoutA::packed({problem_size.m(), problem_size.k()}).stride(0);
typename LayoutB::Stride::Index ldb = LayoutB::packed({problem_size.k(), problem_size.n()}).stride(0);
typename LayoutC::Stride::Index ldc = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
typename LayoutC::Stride::Index ldd = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
int64_t imag_stride_A = int64_t(problem_size.m()) * problem_size.k();
int64_t imag_stride_B = int64_t(problem_size.k()) * problem_size.n();
int64_t imag_stride_C = int64_t(problem_size.m()) * problem_size.n();
int64_t imag_stride_D = int64_t(problem_size.m()) * problem_size.n();
//
// Configure pointers in global memory
//
struct {
Element *base;
void **ptr_real;
void **ptr_imag;
int64_t batch_stride;
int64_t imag_stride;
} tensors[] = {
{ tensor_A.get(), ptr_A_real.get(), ptr_A_imag.get(), batch_stride_A, imag_stride_A},
{ tensor_B.get(), ptr_B_real.get(), ptr_B_imag.get(), batch_stride_B, imag_stride_B},
{ tensor_C.get(), ptr_C_real.get(), ptr_C_imag.get(), batch_stride_C, imag_stride_C},
{ tensor_D.get(), ptr_D_real.get(), ptr_D_imag.get(), batch_stride_D, imag_stride_D}
};
for (auto const &tensor : tensors) {
for (int idx = 0; idx < batch_count; ++idx) {
void *ptr_real = tensor.base + idx * tensor.batch_stride;
void *ptr_imag = tensor.base + idx * tensor.batch_stride + tensor.imag_stride;
cudaError_t error = cudaMemcpy(
tensor.ptr_real + idx,
&ptr_real,
sizeof(void *),
cudaMemcpyHostToDevice);
if (error != cudaSuccess) {
throw std::runtime_error("Failed to copy pointer to device memory");
}
error = cudaMemcpy(
tensor.ptr_imag + idx,
&ptr_imag,
sizeof(void *),
cudaMemcpyHostToDevice);
if (error != cudaSuccess) {
throw std::runtime_error("Failed to copy pointer to device memory");
}
}
}
//
// Construct events
//
cudaEvent_t events[2];
for (auto & event : events) {
result.error = cudaEventCreate(&event);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
return -1;
}
}
// Record an event at the start of a series of GEMM operations
result.error = cudaEventRecord(events[0]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
//
// Run profiling loop
//
for (int iter = 0; iter < options.iterations; ++iter) {
//
// Execute the planar complex array GEMM kernel via the CUTLASS Library's
// dispatch routines.
//
// Note, for planar complex array GEMM kernels, all numeric type arguments
// specify the data type of the base real types. These are understood to
// apply to planar complex representations of matrices in memory and to complex<T>
// structures for scalars.
//
// See tools/library/include/cutlass/library/handle.h for more details.
//
result.status = handle.gemm_planar_complex_array(
problem_size.m(), // expected GEMM M dimension
problem_size.n(), // expected GEMM N dimension
problem_size.k(), // expected GEMM K dimension
batch_count, // Number of batched elements
nullptr,
nullptr,
nullptr,
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued accumulation
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued alpha/beta scalars
&options.alpha, // Pointer to alpha scalar, of type complex<T>
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued A matrix
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of A matrix
cutlass::library::ComplexTransform::kConjugate, // Complex transformation on A matrix operand
ptr_A_real.get(), // Pointer to array of pointers to real part of A matrix
ptr_A_imag.get(), // Pointer to array of pointers to imaginary part of A matrix
lda, // Leading dimension of real part of A matrix
lda, // Leading dimension of imaginary part of A matrix
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued B matrix
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of B matrix
cutlass::library::ComplexTransform::kNone, // Complex transformation on B matrix operand
ptr_B_real.get(), // Pointer to array of pointers to real part of B matrix
ptr_B_imag.get(), // Pointer to array of pointers to imaginary part of B matrix
ldb, // Leading dimension of real part of B matrix
ldb, // Leading dimension of imaginary part of B matrix
&options.beta, // Pointer to beta scalar, of type complex<T>
cutlass::library::NumericTypeID::kF16, // Base data type of complex valued C and D matrices
ptr_C_real.get(), // Pointer to array of pointers to real part of C matrix
ptr_C_imag.get(), // Pointer to array of pointers to imaginary part of C matrix
ldc, // Leading dimension of real part of C matrix
ldc, // Leading dimension of imaginary part of C matrix
ptr_D_real.get(), // Pointer to array of pointers to real part of D matrix
ptr_D_imag.get(), // Pointer to array of pointers to imaginary part of D matrix
ldd, // Leading dimension of real part of D matrix
ldd // Leading dimension of imaginary part of D matrix
);
if (result.status != cutlass::Status::kSuccess) {
std::cerr << "CUTLASS internal error - configuration not supported" << std::endl;
return result;
}
}
//
// Stop profiling loop
//
// Record an event when the GEMM operations have been launched.
result.error = cudaEventRecord(events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Wait for work on the device to complete.
result.error = cudaEventSynchronize(events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Measure elapsed runtime
float runtime_ms = 0;
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Compute average runtime and GFLOPs.
result.runtime_ms = double(runtime_ms) / double(options.iterations);
result.gflops = options.gflops(result.runtime_ms / 1000.0);
// Cleanup
for (auto event : events) {
(void)cudaEventDestroy(event);
}
if (handle.get_last_operation()) {
std::cout << "Recently executed '" << handle.get_last_operation()->description().name << "'" << std::endl;
}
//
// Compute reference in device code
//
if (options.reference_check) {
result.passed = true;
for (int64_t idx = 0; result.passed && idx < int64_t(batch_count); ++idx) {
cutlass::reference::device::GemmPlanarComplex<
Element, LayoutA,
Element, LayoutB,
Element, LayoutC,
ElementAccumulator
>(
problem_size,
options.alpha,
{tensor_A.get() + idx * batch_stride_A, lda, imag_stride_A},
cutlass::ComplexTransform::kConjugate,
{tensor_B.get() + idx * batch_stride_B, ldb, imag_stride_B},
cutlass::ComplexTransform::kNone,
options.beta,
{tensor_C.get() + idx * batch_stride_C, ldc, imag_stride_C},
{tensor_D_ref.get() + idx * batch_stride_D, ldd, imag_stride_D}
);
Element epsilon = 0.1_hf;
Element nonzero_floor = 0.1_hf;
result.passed = cutlass::reference::device::BlockCompareRelativelyEqual(
tensor_D.get() + idx * batch_stride_D,
tensor_D_ref.get() + idx * batch_stride_D,
batch_stride_D,
epsilon,
nonzero_floor
);
}
if (result.passed) {
std::cout << "Reference check passed." << std::endl;
}
else {
std::cerr << "Error - reference check failed." << std::endl;
}
}
std::cout << "Runtime: " << result.runtime_ms << " ms" << std::endl;
std::cout << " GFLOPs: " << result.gflops << std::endl;
return result;
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const **args) {
//
// This example uses mma.sync to directly access Tensor Cores to achieve peak performance.
//
// Volta Tensor Core operations are first available in CUDA 10.1 Toolkit.
//
// Turing Tensor Core operations are first available in CUDA 10.2 Toolkit.
//
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (props.major < 7) {
std::cerr << "Tensor Core operations must be run on a machine with compute capability at least 70."
<< std::endl;
// Returning zero so this passes on older architectures. Its actions are no-op.
return 0;
}
else if (props.major == 7 && props.minor <= 2) {
//
// If running on the Volta architecture, at least CUDA 10.1 Toolkit is required to run this example.
//
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1))) {
std::cerr << "Volta Tensor Core operations must be compiled with CUDA 10.1 Toolkit or later." << std::endl;
// Returning zero so this passes on older Toolkits. Its actions are no-op.
return 0;
}
}
else if (props.major == 7 && props.minor >= 5) {
//
// If running on the Turing architecture, at least CUDA 10.2 Toolkit is required to run this example.
//
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
std::cerr << "Turing Tensor Core operations must be compiled with CUDA 10.2 Toolkit or later." << std::endl;
// Returning zero so this passes on older Toolkits. Its actions are no-op.
return 0;
}
}
else {
// NVIDIA Ampere Architecture GPUs (SM80 and later) are fully supported on CUDA 11 Toolkit and beyond.
//
// fall through
}
//
// Parse options
//
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
// Execute one problem size
if (!options.valid()) {
std::cerr << "Invalid problem." << std::endl;
return -1;
}
TestbedPlanarComplex testbed(options);
Result result = testbed.profile(options);
return result.passed ? 0 : -1;
}
/////////////////////////////////////////////////////////////////////////////////////////////////