forked from coreylynch/async-rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
a3c.py
255 lines (206 loc) · 8.11 KB
/
a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python
from skimage.transform import resize
from skimage.color import rgb2gray
import threading
import tensorflow as tf
import sys
import random
import numpy as np
import time
import gym
from keras import backend as K
from keras.layers import Convolution2D, Flatten, Dense
from collections import deque
from a3c_model import build_policy_and_value_networks
from keras import backend as K
from atari_environment import AtariEnvironment
# Path params
EXPERIMENT_NAME = "breakout_a3c"
SUMMARY_SAVE_PATH = "/Users/coreylynch/dev/async-rl/summaries/"+EXPERIMENT_NAME
CHECKPOINT_SAVE_PATH = "/tmp/"+EXPERIMENT_NAME+".ckpt"
CHECKPOINT_NAME = "/tmp/breakout_a3c.ckpt-5"
CHECKPOINT_INTERVAL=5000
SUMMARY_INTERVAL=5
# TRAINING = False
TRAINING = True
SHOW_TRAINING = True
# SHOW_TRAINING = False
# Experiment params
GAME = "Breakout-v0"
ACTIONS = 3
NUM_CONCURRENT = 8
NUM_EPISODES = 20000
AGENT_HISTORY_LENGTH = 4
RESIZED_WIDTH = 84
RESIZED_HEIGHT = 84
# DQN Params
GAMMA = 0.99
# Optimization Params
LEARNING_RATE = 0.00001
#Shared global parameters
T = 0
TMAX = 80000000
t_max = 32
def sample_policy_action(num_actions, probs):
"""
Sample an action from an action probability distribution output by
the policy network.
"""
# Subtract a tiny value from probabilities in order to avoid
# "ValueError: sum(pvals[:-1]) > 1.0" in numpy.multinomial
probs = probs - np.finfo(np.float32).epsneg
histogram = np.random.multinomial(1, probs)
action_index = int(np.nonzero(histogram)[0])
return action_index
def actor_learner_thread(num, env, session, graph_ops, summary_ops, saver):
# We use global shared counter T, and TMAX constant
global TMAX, T
# Unpack graph ops
s, a, R, minimize, p_network, v_network = graph_ops
# Unpack tensorboard summary stuff
r_summary_placeholder, update_ep_reward, val_summary_placeholder, update_ep_val, summary_op = summary_ops
# Wrap env with AtariEnvironment helper class
env = AtariEnvironment(gym_env=env, resized_width=RESIZED_WIDTH, resized_height=RESIZED_HEIGHT, agent_history_length=AGENT_HISTORY_LENGTH)
time.sleep(5*num)
# Set up per-episode counters
ep_reward = 0
ep_avg_v = 0
v_steps = 0
ep_t = 0
probs_summary_t = 0
s_t = env.get_initial_state()
terminal = False
while T < TMAX:
s_batch = []
past_rewards = []
a_batch = []
t = 0
t_start = t
while not (terminal or ((t - t_start) == t_max)):
# Perform action a_t according to policy pi(a_t | s_t)
probs = session.run(p_network, feed_dict={s: [s_t]})[0]
action_index = sample_policy_action(ACTIONS, probs)
a_t = np.zeros([ACTIONS])
a_t[action_index] = 1
if probs_summary_t % 100 == 0:
print "P, ", np.max(probs), "V ", session.run(v_network, feed_dict={s: [s_t]})[0][0]
s_batch.append(s_t)
a_batch.append(a_t)
s_t1, r_t, terminal, info = env.step(action_index)
ep_reward += r_t
r_t = np.clip(r_t, -1, 1)
past_rewards.append(r_t)
t += 1
T += 1
ep_t += 1
probs_summary_t += 1
s_t = s_t1
if terminal:
R_t = 0
else:
R_t = session.run(v_network, feed_dict={s: [s_t]})[0][0] # Bootstrap from last state
R_batch = np.zeros(t)
for i in reversed(range(t_start, t)):
R_t = past_rewards[i] + GAMMA * R_t
R_batch[i] = R_t
session.run(minimize, feed_dict={R : R_batch,
a : a_batch,
s : s_batch})
# Save progress every 5000 iterations
if T % CHECKPOINT_INTERVAL == 0:
saver.save(session, CHECKPOINT_SAVE_PATH, global_step = T)
if terminal:
# Episode ended, collect stats and reset game
session.run(update_ep_reward, feed_dict={r_summary_placeholder: ep_reward})
print "THREAD:", num, "/ TIME", T, "/ REWARD", ep_reward
s_t = env.get_initial_state()
terminal = False
# Reset per-episode counters
ep_reward = 0
ep_t = 0
def build_graph():
# Create shared global policy and value networks
s, p_network, v_network, p_params, v_params = build_policy_and_value_networks(num_actions=ACTIONS, agent_history_length=AGENT_HISTORY_LENGTH, resized_width=RESIZED_WIDTH, resized_height=RESIZED_HEIGHT)
# Shared global optimizer
optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
# Op for applying remote gradients
R_t = tf.placeholder("float", [None])
a_t = tf.placeholder("float", [None, ACTIONS])
log_prob = tf.log(tf.reduce_sum(tf.mul(p_network, a_t), reduction_indices=1))
p_loss = -log_prob * (R_t - v_network)
v_loss = tf.reduce_mean(tf.square(R_t - v_network))
total_loss = p_loss + (0.5 * v_loss)
minimize = optimizer.minimize(total_loss)
return s, a_t, R_t, minimize
# Set up some episode summary ops to visualize on tensorboard.
def setup_summaries():
episode_reward = tf.Variable(0.)
tf.scalar_summary("Episode Reward", episode_reward)
r_summary_placeholder = tf.placeholder("float")
update_ep_reward = episode_reward.assign(r_summary_placeholder)
ep_avg_v = tf.Variable(0.)
tf.scalar_summary("Episode Value", ep_avg_v)
val_summary_placeholder = tf.placeholder("float")
update_ep_val = ep_avg_v.assign(val_summary_placeholder)
summary_op = tf.merge_all_summaries()
return r_summary_placeholder, update_ep_reward, val_summary_placeholder, update_ep_val, summary_op
def train(session, graph_ops, saver):
# Set up game environments (one per thread)
envs = [gym.make(GAME) for i in range(NUM_CONCURRENT)]
summary_ops = setup_summaries()
summary_op = summary_ops[-1]
# Initialize variables
session.run(tf.initialize_all_variables())
writer = tf.train.SummaryWriter(SUMMARY_SAVE_PATH, session.graph)
# Start NUM_CONCURRENT training threads
actor_learner_threads = [threading.Thread(target=actor_learner_thread, args=(thread_id, envs[thread_id], session, graph_ops, summary_ops, saver)) for thread_id in range(NUM_CONCURRENT)]
for t in actor_learner_threads:
t.start()
# Show the agents training and write summary statistics
last_summary_time = 0
while True:
if SHOW_TRAINING:
for env in envs:
env.render()
now = time.time()
if now - last_summary_time > SUMMARY_INTERVAL:
summary_str = session.run(summary_op)
writer.add_summary(summary_str, float(T))
last_summary_time = now
for t in actor_learner_threads:
t.join()
def evaluation(session, graph_ops, saver):
saver.restore(session, CHECKPOINT_NAME)
print "Restored model weights from ", CHECKPOINT_NAME
monitor_env = gym.make(GAME)
monitor_env.monitor.start('/tmp/'+EXPERIMENT_NAME+"/eval")
# Unpack graph ops
s, a_t, R_t, learning_rate, minimize, p_network, v_network = graph_ops
# Wrap env with AtariEnvironment helper class
env = AtariEnvironment(gym_env=monitor_env, resized_width=RESIZED_WIDTH, resized_height=RESIZED_HEIGHT, agent_history_length=AGENT_HISTORY_LENGTH)
for i_episode in xrange(100):
s_t = env.get_initial_state()
ep_reward = 0
terminal = False
while not terminal:
monitor_env.render()
# Forward the deep q network, get Q(s,a) values
probs = p_network.eval(session = session, feed_dict = {s : [s_t]})[0]
action_index = sample_policy_action(ACTIONS, probs)
s_t1, r_t, terminal, info = env.step(action_index)
s_t = s_t1
ep_reward += r_t
print ep_reward
monitor_env.monitor.close()
def main(_):
g = tf.Graph()
with g.as_default(), tf.Session() as session:
K.set_session(session)
graph_ops = build_graph()
saver = tf.train.Saver()
if TRAINING:
train(session, graph_ops, saver)
else:
evaluation(session, graph_ops, saver)
if __name__ == "__main__":
tf.app.run()