-
Notifications
You must be signed in to change notification settings - Fork 169
/
nodes.py
980 lines (804 loc) · 36.2 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
import os
import sys
import numpy as np
import torch
import cv2
from PIL import Image
import folder_paths
import comfy.utils
import time
import copy
import dill
import yaml
from ultralytics import YOLO
current_file_path = os.path.abspath(__file__)
current_directory = os.path.dirname(current_file_path)
from .LivePortrait.live_portrait_wrapper import LivePortraitWrapper
from .LivePortrait.utils.camera import get_rotation_matrix
from .LivePortrait.config.inference_config import InferenceConfig
from .LivePortrait.modules.spade_generator import SPADEDecoder
from .LivePortrait.modules.warping_network import WarpingNetwork
from .LivePortrait.modules.motion_extractor import MotionExtractor
from .LivePortrait.modules.appearance_feature_extractor import AppearanceFeatureExtractor
from .LivePortrait.modules.stitching_retargeting_network import StitchingRetargetingNetwork
from collections import OrderedDict
cur_device = None
def get_device():
global cur_device
if cur_device == None:
if torch.cuda.is_available():
cur_device = torch.device('cuda')
print("Uses CUDA device.")
elif torch.backends.mps.is_available():
cur_device = torch.device('mps')
print("Uses MPS device.")
else:
cur_device = torch.device('cpu')
print("Uses CPU device.")
return cur_device
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def rgb_crop(rgb, region):
return rgb[region[1]:region[3], region[0]:region[2]]
def rgb_crop_batch(rgbs, region):
return rgbs[:, region[1]:region[3], region[0]:region[2]]
def get_rgb_size(rgb):
return rgb.shape[1], rgb.shape[0]
def create_transform_matrix(x, y, s_x, s_y):
return np.float32([[s_x, 0, x], [0, s_y, y]])
def get_model_dir(m):
try:
return folder_paths.get_folder_paths(m)[0]
except:
return os.path.join(folder_paths.models_dir, m)
def calc_crop_limit(center, img_size, crop_size):
pos = center - crop_size / 2
if pos < 0:
crop_size += pos * 2
pos = 0
pos2 = pos + crop_size
if img_size < pos2:
crop_size -= (pos2 - img_size) * 2
pos2 = img_size
pos = pos2 - crop_size
return pos, pos2, crop_size
def retargeting(delta_out, driving_exp, factor, idxes):
for idx in idxes:
#delta_out[0, idx] -= src_exp[0, idx] * factor
delta_out[0, idx] += driving_exp[0, idx] * factor
class PreparedSrcImg:
def __init__(self, src_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori):
self.src_rgb = src_rgb
self.crop_trans_m = crop_trans_m
self.x_s_info = x_s_info
self.f_s_user = f_s_user
self.x_s_user = x_s_user
self.mask_ori = mask_ori
import requests
from tqdm import tqdm
class LP_Engine:
pipeline = None
detect_model = None
mask_img = None
temp_img_idx = 0
def get_temp_img_name(self):
self.temp_img_idx += 1
return "expression_edit_preview" + str(self.temp_img_idx) + ".png"
def download_model(_, file_path, model_url):
print('AdvancedLivePortrait: Downloading model...')
response = requests.get(model_url, stream=True)
try:
if response.status_code == 200:
total_size = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
# tqdm will display a progress bar
with open(file_path, 'wb') as file, tqdm(
desc='Downloading',
total=total_size,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in response.iter_content(block_size):
bar.update(len(data))
file.write(data)
except requests.exceptions.RequestException as err:
print('AdvancedLivePortrait: Model download failed: {err}')
print(f'AdvancedLivePortrait: Download it manually from: {model_url}')
print(f'AdvancedLivePortrait: And put it in {file_path}')
except Exception as e:
print(f'AdvancedLivePortrait: An unexpected error occurred: {e}')
def remove_ddp_dumplicate_key(_, state_dict):
state_dict_new = OrderedDict()
for key in state_dict.keys():
state_dict_new[key.replace('module.', '')] = state_dict[key]
return state_dict_new
def filter_for_model(_, checkpoint, prefix):
filtered_checkpoint = {key.replace(prefix + "_module.", ""): value for key, value in checkpoint.items() if
key.startswith(prefix)}
return filtered_checkpoint
def load_model(self, model_config, model_type):
device = get_device()
if model_type == 'stitching_retargeting_module':
ckpt_path = os.path.join(get_model_dir("liveportrait"), "retargeting_models", model_type + ".pth")
else:
ckpt_path = os.path.join(get_model_dir("liveportrait"), "base_models", model_type + ".pth")
is_safetensors = None
if os.path.isfile(ckpt_path) == False:
is_safetensors = True
ckpt_path = os.path.join(get_model_dir("liveportrait"), model_type + ".safetensors")
if os.path.isfile(ckpt_path) == False:
self.download_model(ckpt_path,
"https://huggingface.co/Kijai/LivePortrait_safetensors/resolve/main/" + model_type + ".safetensors")
model_params = model_config['model_params'][f'{model_type}_params']
if model_type == 'appearance_feature_extractor':
model = AppearanceFeatureExtractor(**model_params).to(device)
elif model_type == 'motion_extractor':
model = MotionExtractor(**model_params).to(device)
elif model_type == 'warping_module':
model = WarpingNetwork(**model_params).to(device)
elif model_type == 'spade_generator':
model = SPADEDecoder(**model_params).to(device)
elif model_type == 'stitching_retargeting_module':
# Special handling for stitching and retargeting module
config = model_config['model_params']['stitching_retargeting_module_params']
checkpoint = comfy.utils.load_torch_file(ckpt_path)
stitcher = StitchingRetargetingNetwork(**config.get('stitching'))
if is_safetensors:
stitcher.load_state_dict(self.filter_for_model(checkpoint, 'retarget_shoulder'))
else:
stitcher.load_state_dict(self.remove_ddp_dumplicate_key(checkpoint['retarget_shoulder']))
stitcher = stitcher.to(device)
stitcher.eval()
return {
'stitching': stitcher,
}
else:
raise ValueError(f"Unknown model type: {model_type}")
model.load_state_dict(comfy.utils.load_torch_file(ckpt_path))
model.eval()
return model
def load_models(self):
model_path = get_model_dir("liveportrait")
if not os.path.exists(model_path):
os.mkdir(model_path)
model_config_path = os.path.join(current_directory, 'LivePortrait', 'config', 'models.yaml')
model_config = yaml.safe_load(open(model_config_path, 'r'))
appearance_feature_extractor = self.load_model(model_config, 'appearance_feature_extractor')
motion_extractor = self.load_model(model_config, 'motion_extractor')
warping_module = self.load_model(model_config, 'warping_module')
spade_generator = self.load_model(model_config, 'spade_generator')
stitching_retargeting_module = self.load_model(model_config, 'stitching_retargeting_module')
self.pipeline = LivePortraitWrapper(InferenceConfig(), appearance_feature_extractor, motion_extractor, warping_module, spade_generator, stitching_retargeting_module)
def get_detect_model(self):
if self.detect_model == None:
model_dir = get_model_dir("ultralytics")
if not os.path.exists(model_dir): os.mkdir(model_dir)
model_path = os.path.join(model_dir, "face_yolov8n.pt")
if not os.path.exists(model_path):
self.download_model(model_path, "https://huggingface.co/Bingsu/adetailer/resolve/main/face_yolov8n.pt")
self.detect_model = YOLO(model_path)
return self.detect_model
def get_face_bboxes(self, image_rgb):
detect_model = self.get_detect_model()
pred = detect_model(image_rgb, conf=0.7, device="")
return pred[0].boxes.xyxy.cpu().numpy()
def detect_face(self, image_rgb, crop_factor, sort = True):
bboxes = self.get_face_bboxes(image_rgb)
w, h = get_rgb_size(image_rgb)
print(f"w, h:{w, h}")
cx = w / 2
min_diff = w
best_box = None
for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
if bbox_w < 30: continue
diff = abs(cx - (x1 + bbox_w / 2))
if diff < min_diff:
best_box = [x1, y1, x2, y2]
print(f"diff, min_diff, best_box:{diff, min_diff, best_box}")
min_diff = diff
if best_box == None:
print("Failed to detect face!!")
return [0, 0, w, h]
x1, y1, x2, y2 = best_box
#for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
bbox_h = y2 - y1
crop_w = bbox_w * crop_factor
crop_h = bbox_h * crop_factor
crop_w = max(crop_h, crop_w)
crop_h = crop_w
kernel_x = int(x1 + bbox_w / 2)
kernel_y = int(y1 + bbox_h / 2)
new_x1 = int(kernel_x - crop_w / 2)
new_x2 = int(kernel_x + crop_w / 2)
new_y1 = int(kernel_y - crop_h / 2)
new_y2 = int(kernel_y + crop_h / 2)
if not sort:
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
elif w < new_x2:
new_x1 -= (new_x2 - w)
new_x2 = w
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
elif h < new_y2:
new_y1 -= (new_y2 - h)
new_y2 = h
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
if w < new_x2 and h < new_y2:
over_x = new_x2 - w
over_y = new_y2 - h
over_min = min(over_x, over_y)
new_x2 -= over_min
new_y2 -= over_min
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
def calc_face_region(self, square, dsize):
region = copy.deepcopy(square)
is_changed = False
if dsize[0] < region[2]:
region[2] = dsize[0]
is_changed = True
if dsize[1] < region[3]:
region[3] = dsize[1]
is_changed = True
return region, is_changed
def expand_img(self, rgb_img, square):
#new_img = rgb_crop(rgb_img, face_region)
crop_trans_m = create_transform_matrix(max(-square[0], 0), max(-square[1], 0), 1, 1)
new_img = cv2.warpAffine(rgb_img, crop_trans_m, (square[2] - square[0], square[3] - square[1]),
cv2.INTER_LINEAR)
return new_img
def get_pipeline(self):
if self.pipeline == None:
print("Load pipeline...")
self.load_models()
return self.pipeline
def prepare_src_image(self, img):
h, w = img.shape[:2]
input_shape = [256,256]
if h != input_shape[0] or w != input_shape[1]:
if 256 < h: interpolation = cv2.INTER_AREA
else: interpolation = cv2.INTER_LINEAR
x = cv2.resize(img, (input_shape[0], input_shape[1]), interpolation = interpolation)
else:
x = img.copy()
if x.ndim == 3:
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
elif x.ndim == 4:
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
else:
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
x = np.clip(x, 0, 1) # clip to 0~1
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
x = x.to(get_device())
return x
def GetMaskImg(self):
if self.mask_img is None:
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "./LivePortrait/utils/resources/mask_template.png")
self.mask_img = cv2.imread(path, cv2.IMREAD_COLOR)
return self.mask_img
def crop_face(self, img_rgb, crop_factor):
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
return face_img
def prepare_source(self, source_image, crop_factor, is_video = False, tracking = False):
print("Prepare source...")
engine = self.get_pipeline()
source_image_np = (source_image * 255).byte().numpy()
img_rgb = source_image_np[0]
psi_list = []
for img_rgb in source_image_np:
if tracking or len(psi_list) == 0:
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
s_x = (face_region[2] - face_region[0]) / 512.
s_y = (face_region[3] - face_region[1]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s_x, s_y)
mask_ori = cv2.warpAffine(self.GetMaskImg(), crop_trans_m, get_rgb_size(img_rgb), cv2.INTER_LINEAR)
mask_ori = mask_ori.astype(np.float32) / 255.
if is_changed:
s = (crop_region[2] - crop_region[0]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s, s)
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
i_s = self.prepare_src_image(face_img)
x_s_info = engine.get_kp_info(i_s)
f_s_user = engine.extract_feature_3d(i_s)
x_s_user = engine.transform_keypoint(x_s_info)
psi = PreparedSrcImg(img_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori)
if is_video == False:
return psi
psi_list.append(psi)
return psi_list
def prepare_driving_video(self, face_images):
print("Prepare driving video...")
pipeline = self.get_pipeline()
f_img_np = (face_images * 255).byte().numpy()
out_list = []
for f_img in f_img_np:
i_d = self.prepare_src_image(f_img)
d_info = pipeline.get_kp_info(i_d)
out_list.append(d_info)
return out_list
def calc_fe(_, x_d_new, eyes, eyebrow, wink, pupil_x, pupil_y, mouth, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll):
x_d_new[0, 20, 1] += smile * -0.01
x_d_new[0, 14, 1] += smile * -0.02
x_d_new[0, 17, 1] += smile * 0.0065
x_d_new[0, 17, 2] += smile * 0.003
x_d_new[0, 13, 1] += smile * -0.00275
x_d_new[0, 16, 1] += smile * -0.00275
x_d_new[0, 3, 1] += smile * -0.0035
x_d_new[0, 7, 1] += smile * -0.0035
x_d_new[0, 19, 1] += mouth * 0.001
x_d_new[0, 19, 2] += mouth * 0.0001
x_d_new[0, 17, 1] += mouth * -0.0001
rotate_pitch -= mouth * 0.05
x_d_new[0, 20, 2] += eee * -0.001
x_d_new[0, 20, 1] += eee * -0.001
#x_d_new[0, 19, 1] += eee * 0.0006
x_d_new[0, 14, 1] += eee * -0.001
x_d_new[0, 14, 1] += woo * 0.001
x_d_new[0, 3, 1] += woo * -0.0005
x_d_new[0, 7, 1] += woo * -0.0005
x_d_new[0, 17, 2] += woo * -0.0005
x_d_new[0, 11, 1] += wink * 0.001
x_d_new[0, 13, 1] += wink * -0.0003
x_d_new[0, 17, 0] += wink * 0.0003
x_d_new[0, 17, 1] += wink * 0.0003
x_d_new[0, 3, 1] += wink * -0.0003
rotate_roll -= wink * 0.1
rotate_yaw -= wink * 0.1
if 0 < pupil_x:
x_d_new[0, 11, 0] += pupil_x * 0.0007
x_d_new[0, 15, 0] += pupil_x * 0.001
else:
x_d_new[0, 11, 0] += pupil_x * 0.001
x_d_new[0, 15, 0] += pupil_x * 0.0007
x_d_new[0, 11, 1] += pupil_y * -0.001
x_d_new[0, 15, 1] += pupil_y * -0.001
eyes -= pupil_y / 2.
x_d_new[0, 11, 1] += eyes * -0.001
x_d_new[0, 13, 1] += eyes * 0.0003
x_d_new[0, 15, 1] += eyes * -0.001
x_d_new[0, 16, 1] += eyes * 0.0003
x_d_new[0, 1, 1] += eyes * -0.00025
x_d_new[0, 2, 1] += eyes * 0.00025
if 0 < eyebrow:
x_d_new[0, 1, 1] += eyebrow * 0.001
x_d_new[0, 2, 1] += eyebrow * -0.001
else:
x_d_new[0, 1, 0] += eyebrow * -0.001
x_d_new[0, 2, 0] += eyebrow * 0.001
x_d_new[0, 1, 1] += eyebrow * 0.0003
x_d_new[0, 2, 1] += eyebrow * -0.0003
return torch.Tensor([rotate_pitch, rotate_yaw, rotate_roll])
g_engine = LP_Engine()
class ExpressionSet:
def __init__(self, erst = None, es = None):
if es != None:
self.e = copy.deepcopy(es.e) # [:, :, :]
self.r = copy.deepcopy(es.r) # [:]
self.s = copy.deepcopy(es.s)
self.t = copy.deepcopy(es.t)
elif erst != None:
self.e = erst[0]
self.r = erst[1]
self.s = erst[2]
self.t = erst[3]
else:
self.e = torch.from_numpy(np.zeros((1, 21, 3))).float().to(get_device())
self.r = torch.Tensor([0, 0, 0])
self.s = 0
self.t = 0
def div(self, value):
self.e /= value
self.r /= value
self.s /= value
self.t /= value
def add(self, other):
self.e += other.e
self.r += other.r
self.s += other.s
self.t += other.t
def sub(self, other):
self.e -= other.e
self.r -= other.r
self.s -= other.s
self.t -= other.t
def mul(self, value):
self.e *= value
self.r *= value
self.s *= value
self.t *= value
#def apply_ratio(self, ratio): self.exp *= ratio
def logging_time(original_fn):
def wrapper_fn(*args, **kwargs):
start_time = time.time()
result = original_fn(*args, **kwargs)
end_time = time.time()
print("WorkingTime[{}]: {} sec".format(original_fn.__name__, end_time - start_time))
return result
return wrapper_fn
#exp_data_dir = os.path.join(current_directory, "exp_data")
exp_data_dir = os.path.join(folder_paths.output_directory, "exp_data")
if os.path.isdir(exp_data_dir) == False:
os.mkdir(exp_data_dir)
class SaveExpData:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"file_name": ("STRING", {"multiline": False, "default": ""}),
},
"optional": {"save_exp": ("EXP_DATA",), }
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("file_name",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
OUTPUT_NODE = True
def run(self, file_name, save_exp:ExpressionSet=None):
if save_exp == None or file_name == "":
return file_name
with open(os.path.join(exp_data_dir, file_name + ".exp"), "wb") as f:
dill.dump(save_exp, f)
return file_name
class LoadExpData:
@classmethod
def INPUT_TYPES(s):
file_list = [os.path.splitext(file)[0] for file in os.listdir(exp_data_dir) if file.endswith('.exp')]
return {"required": {
"file_name": (sorted(file_list, key=str.lower),),
"ratio": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}),
},
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
def run(self, file_name, ratio):
# es = ExpressionSet()
with open(os.path.join(exp_data_dir, file_name + ".exp"), 'rb') as f:
es = dill.load(f)
es.mul(ratio)
return (es,)
class ExpData:
@classmethod
def INPUT_TYPES(s):
return {"required":{
#"code": ("STRING", {"multiline": False, "default": ""}),
"code1": ("INT", {"default": 0}),
"value1": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code2": ("INT", {"default": 0}),
"value2": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code3": ("INT", {"default": 0}),
"value3": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code4": ("INT", {"default": 0}),
"value4": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code5": ("INT", {"default": 0}),
"value5": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
},
"optional":{"add_exp": ("EXP_DATA",),}
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
def run(self, code1, value1, code2, value2, code3, value3, code4, value4, code5, value5, add_exp=None):
if add_exp == None:
es = ExpressionSet()
else:
es = ExpressionSet(es = add_exp)
codes = [code1, code2, code3, code4, code5]
values = [value1, value2, value3, value4, value5]
for i in range(5):
idx = int(codes[i] / 10)
r = codes[i] % 10
es.e[0, idx, r] += values[i] * 0.001
return (es,)
class PrintExpData:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"cut_noise": ("FLOAT", {"default": 0, "min": 0, "max": 100, "step": 0.1}),
},
"optional": {"exp": ("EXP_DATA",), }
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
OUTPUT_NODE = True
def run(self, cut_noise, exp = None):
if exp == None: return (exp,)
cuted_list = []
e = exp.exp * 1000
for idx in range(21):
for r in range(3):
a = abs(e[0, idx, r])
if(cut_noise < a): cuted_list.append((a, e[0, idx, r], idx*10+r))
sorted_list = sorted(cuted_list, reverse=True, key=lambda item: item[0])
print(f"sorted_list: {[[item[2], round(float(item[1]),1)] for item in sorted_list]}")
return (exp,)
class Command:
def __init__(self, es, change, keep):
self.es:ExpressionSet = es
self.change = change
self.keep = keep
crop_factor_default = 1.7
crop_factor_min = 1.5
crop_factor_max = 2.5
class AdvancedLivePortrait:
def __init__(self):
self.src_images = None
self.driving_images = None
self.pbar = comfy.utils.ProgressBar(1)
self.crop_factor = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"retargeting_eyes": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}),
"retargeting_mouth": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}),
"crop_factor": ("FLOAT", {"default": crop_factor_default,
"min": crop_factor_min, "max": crop_factor_max, "step": 0.1}),
"turn_on": ("BOOLEAN", {"default": True}),
"tracking_src_vid": ("BOOLEAN", {"default": False}),
"animate_without_vid": ("BOOLEAN", {"default": False}),
"command": ("STRING", {"multiline": True, "default": ""}),
},
"optional": {
"src_images": ("IMAGE",),
"motion_link": ("EDITOR_LINK",),
"driving_images": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "run"
OUTPUT_NODE = True
CATEGORY = "AdvancedLivePortrait"
# INPUT_IS_LIST = False
# OUTPUT_IS_LIST = (False,)
def parsing_command(self, command, motoin_link):
command.replace(' ', '')
# if command == '': return
lines = command.split('\n')
cmd_list = []
total_length = 0
i = 0
#old_es = None
for line in lines:
i += 1
if line == '': continue
try:
cmds = line.split('=')
idx = int(cmds[0])
if idx == 0: es = ExpressionSet()
else: es = ExpressionSet(es = motoin_link[idx])
cmds = cmds[1].split(':')
change = int(cmds[0])
keep = int(cmds[1])
except:
assert False, f"(AdvancedLivePortrait) Command Err Line {i}: {line}"
return None, None
total_length += change + keep
es.div(change)
cmd_list.append(Command(es, change, keep))
return cmd_list, total_length
def run(self, retargeting_eyes, retargeting_mouth, turn_on, tracking_src_vid, animate_without_vid, command, crop_factor,
src_images=None, driving_images=None, motion_link=None):
if turn_on == False: return (None,None)
src_length = 1
if src_images == None:
if motion_link != None:
self.psi_list = [motion_link[0]]
else: return (None,None)
if src_images != None:
src_length = len(src_images)
if id(src_images) != id(self.src_images) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.src_images = src_images
if 1 < src_length:
self.psi_list = g_engine.prepare_source(src_images, crop_factor, True, tracking_src_vid)
else:
self.psi_list = [g_engine.prepare_source(src_images, crop_factor)]
cmd_list, cmd_length = self.parsing_command(command, motion_link)
if cmd_list == None: return (None,None)
cmd_idx = 0
driving_length = 0
if driving_images is not None:
if id(driving_images) != id(self.driving_images):
self.driving_images = driving_images
self.driving_values = g_engine.prepare_driving_video(driving_images)
driving_length = len(self.driving_values)
total_length = max(driving_length, src_length)
if animate_without_vid:
total_length = max(total_length, cmd_length)
c_i_es = ExpressionSet()
c_o_es = ExpressionSet()
d_0_es = None
out_list = []
psi = None
pipeline = g_engine.get_pipeline()
for i in range(total_length):
if i < src_length:
psi = self.psi_list[i]
s_info = psi.x_s_info
s_es = ExpressionSet(erst=(s_info['kp'] + s_info['exp'], torch.Tensor([0, 0, 0]), s_info['scale'], s_info['t']))
new_es = ExpressionSet(es = s_es)
if i < cmd_length:
cmd = cmd_list[cmd_idx]
if 0 < cmd.change:
cmd.change -= 1
c_i_es.add(cmd.es)
c_i_es.sub(c_o_es)
elif 0 < cmd.keep:
cmd.keep -= 1
new_es.add(c_i_es)
if cmd.change == 0 and cmd.keep == 0:
cmd_idx += 1
if cmd_idx < len(cmd_list):
c_o_es = ExpressionSet(es = c_i_es)
cmd = cmd_list[cmd_idx]
c_o_es.div(cmd.change)
elif 0 < cmd_length:
new_es.add(c_i_es)
if i < driving_length:
d_i_info = self.driving_values[i]
d_i_r = torch.Tensor([d_i_info['pitch'], d_i_info['yaw'], d_i_info['roll']])#.float().to(device="cuda:0")
if d_0_es is None:
d_0_es = ExpressionSet(erst = (d_i_info['exp'], d_i_r, d_i_info['scale'], d_i_info['t']))
retargeting(s_es.e, d_0_es.e, retargeting_eyes, (11, 13, 15, 16))
retargeting(s_es.e, d_0_es.e, retargeting_mouth, (14, 17, 19, 20))
new_es.e += d_i_info['exp'] - d_0_es.e
new_es.r += d_i_r - d_0_es.r
new_es.t += d_i_info['t'] - d_0_es.t
r_new = get_rotation_matrix(
s_info['pitch'] + new_es.r[0], s_info['yaw'] + new_es.r[1], s_info['roll'] + new_es.r[2])
d_new = new_es.s * (new_es.e @ r_new) + new_es.t
d_new = pipeline.stitching(psi.x_s_user, d_new)
crop_out = pipeline.warp_decode(psi.f_s_user, psi.x_s_user, d_new)
crop_out = pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb),
cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(
np.uint8)
out_list.append(out)
self.pbar.update_absolute(i+1, total_length, ("PNG", Image.fromarray(crop_out), None))
if len(out_list) == 0: return (None,)
out_imgs = torch.cat([pil2tensor(img_rgb) for img_rgb in out_list])
return (out_imgs,)
class ExpressionEditor:
def __init__(self):
self.sample_image = None
self.src_image = None
self.crop_factor = None
@classmethod
def INPUT_TYPES(s):
display = "number"
#display = "slider"
return {
"required": {
"rotate_pitch": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"rotate_yaw": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"rotate_roll": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"blink": ("FLOAT", {"default": 0, "min": -20, "max": 5, "step": 0.5, "display": display}),
"eyebrow": ("FLOAT", {"default": 0, "min": -10, "max": 15, "step": 0.5, "display": display}),
"wink": ("FLOAT", {"default": 0, "min": 0, "max": 25, "step": 0.5, "display": display}),
"pupil_x": ("FLOAT", {"default": 0, "min": -15, "max": 15, "step": 0.5, "display": display}),
"pupil_y": ("FLOAT", {"default": 0, "min": -15, "max": 15, "step": 0.5, "display": display}),
"aaa": ("FLOAT", {"default": 0, "min": -30, "max": 120, "step": 1, "display": display}),
"eee": ("FLOAT", {"default": 0, "min": -20, "max": 15, "step": 0.2, "display": display}),
"woo": ("FLOAT", {"default": 0, "min": -20, "max": 15, "step": 0.2, "display": display}),
"smile": ("FLOAT", {"default": 0, "min": -0.3, "max": 1.3, "step": 0.01, "display": display}),
"src_ratio": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01, "display": display}),
"sample_ratio": ("FLOAT", {"default": 1, "min": -0.2, "max": 1.2, "step": 0.01, "display": display}),
"sample_parts": (["OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"],),
"crop_factor": ("FLOAT", {"default": crop_factor_default,
"min": crop_factor_min, "max": crop_factor_max, "step": 0.1}),
},
"optional": {"src_image": ("IMAGE",), "motion_link": ("EDITOR_LINK",),
"sample_image": ("IMAGE",), "add_exp": ("EXP_DATA",),
},
}
RETURN_TYPES = ("IMAGE", "EDITOR_LINK", "EXP_DATA")
RETURN_NAMES = ("image", "motion_link", "save_exp")
FUNCTION = "run"
OUTPUT_NODE = True
CATEGORY = "AdvancedLivePortrait"
# INPUT_IS_LIST = False
# OUTPUT_IS_LIST = (False,)
def run(self, rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
src_ratio, sample_ratio, sample_parts, crop_factor, src_image=None, sample_image=None, motion_link=None, add_exp=None):
rotate_yaw = -rotate_yaw
new_editor_link = None
if motion_link != None:
self.psi = motion_link[0]
new_editor_link = motion_link.copy()
elif src_image != None:
if id(src_image) != id(self.src_image) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.psi = g_engine.prepare_source(src_image, crop_factor)
self.src_image = src_image
new_editor_link = []
new_editor_link.append(self.psi)
else:
return (None,None)
pipeline = g_engine.get_pipeline()
psi = self.psi
s_info = psi.x_s_info
#delta_new = copy.deepcopy()
s_exp = s_info['exp'] * src_ratio
s_exp[0, 5] = s_info['exp'][0, 5]
s_exp += s_info['kp']
es = ExpressionSet()
if sample_image != None:
if id(self.sample_image) != id(sample_image):
self.sample_image = sample_image
d_image_np = (sample_image * 255).byte().numpy()
d_face = g_engine.crop_face(d_image_np[0], 1.7)
i_d = g_engine.prepare_src_image(d_face)
self.d_info = pipeline.get_kp_info(i_d)
self.d_info['exp'][0, 5, 0] = 0
self.d_info['exp'][0, 5, 1] = 0
# "OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"
if sample_parts == "OnlyExpression" or sample_parts == "All":
es.e += self.d_info['exp'] * sample_ratio
if sample_parts == "OnlyRotation" or sample_parts == "All":
rotate_pitch += self.d_info['pitch'] * sample_ratio
rotate_yaw += self.d_info['yaw'] * sample_ratio
rotate_roll += self.d_info['roll'] * sample_ratio
elif sample_parts == "OnlyMouth":
retargeting(es.e, self.d_info['exp'], sample_ratio, (14, 17, 19, 20))
elif sample_parts == "OnlyEyes":
retargeting(es.e, self.d_info['exp'], sample_ratio, (1, 2, 11, 13, 15, 16))
es.r = g_engine.calc_fe(es.e, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll)
if add_exp != None:
es.add(add_exp)
new_rotate = get_rotation_matrix(s_info['pitch'] + es.r[0], s_info['yaw'] + es.r[1],
s_info['roll'] + es.r[2])
x_d_new = (s_info['scale'] * (1 + es.s)) * ((s_exp + es.e) @ new_rotate) + s_info['t']
x_d_new = pipeline.stitching(psi.x_s_user, x_d_new)
crop_out = pipeline.warp_decode(psi.f_s_user, psi.x_s_user, x_d_new)
crop_out = pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb), cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(np.uint8)
out_img = pil2tensor(out)
filename = g_engine.get_temp_img_name() #"fe_edit_preview.png"
folder_paths.get_save_image_path(filename, folder_paths.get_temp_directory())
img = Image.fromarray(crop_out)
img.save(os.path.join(folder_paths.get_temp_directory(), filename), compress_level=1)
results = list()
results.append({"filename": filename, "type": "temp"})
new_editor_link.append(es)
return {"ui": {"images": results}, "result": (out_img, new_editor_link, es)}
NODE_CLASS_MAPPINGS = {
"AdvancedLivePortrait": AdvancedLivePortrait,
"ExpressionEditor": ExpressionEditor,
"LoadExpData": LoadExpData,
"SaveExpData": SaveExpData,
"ExpData": ExpData,
"PrintExpData:": PrintExpData,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"AdvancedLivePortrait": "Advanced Live Portrait (PHM)",
"ExpressionEditor": "Expression Editor (PHM)",
"LoadExpData": "Load Exp Data (PHM)",
"SaveExpData": "Save Exp Data (PHM)"
}