forked from HongwenZhang/DaNet-DensePose2SMPL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
path_config.py
71 lines (64 loc) · 3.22 KB
/
path_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
# This script is borrowed and extended from https://github.com/nkolot/SPIN/blob/master/config.py
This file contains definitions of useful data stuctures and the paths
for the datasets and data files necessary to run the code.
Things you need to change: *_ROOT that indicate the path to each dataset
"""
from os.path import join, expanduser
H36M_ROOT = join(expanduser('~'), 'Datasets/human/h36m/c2f_vol')
LSP_ROOT = join(expanduser('~'), 'Datasets/human/LSP/lsp_dataset_small')
LSP_ORIGINAL_ROOT = join(expanduser('~'), 'Datasets/human/LSP/lsp_dataset_original')
LSPET_ROOT = join(expanduser('~'), 'Datasets/human/LSP/hr_lspet/hr-lspet')
MPII_ROOT = join(expanduser('~'), 'Datasets/human/mpii')
COCO_ROOT = join(expanduser('~'), 'Datasets/coco')
MPI_INF_3DHP_ROOT = join(expanduser('~'), 'Datasets/human/MPI_INF_3DHP/mpi_inf_3dhp/mpi_inf_3dhp_train_set')
PW3D_ROOT = join(expanduser('~'), 'Datasets/human/3DPW')
UPI_S1H_ROOT = ''
# Output folder to save test/train npz files
DATASET_NPZ_PATH = 'data/dataset_extras'
# Output folder to store the openpose detections
# This is requires only in case you want to regenerate
# the .npz files with the annotations.
OPENPOSE_PATH = 'datasets/openpose'
# Path to test/train npz files
DATASET_FILES = [{
'h36m-p1': join(DATASET_NPZ_PATH, 'h36m_valid_protocol1.npz'),
'h36m-p2': join(DATASET_NPZ_PATH, 'h36m_valid_protocol2.npz'),
'lsp': join(DATASET_NPZ_PATH, 'lsp_dataset_test.npz'),
'mpi-inf-3dhp': join(DATASET_NPZ_PATH, 'mpi_inf_3dhp_valid.npz'),
'3dpw': join(DATASET_NPZ_PATH, '3dpw_test.npz'),
'coco': join(DATASET_NPZ_PATH, 'coco_2014_val.npz'),
'dp_coco': join(DATASET_NPZ_PATH, 'dp_coco_2014_minival.npz'),
},
{
'h36m': join(DATASET_NPZ_PATH, 'h36m_mosh_train.npz'),
'lsp-orig': join(DATASET_NPZ_PATH, 'lsp_dataset_original_train.npz'),
'mpii': join(DATASET_NPZ_PATH, 'mpii_train.npz'),
'coco': join(DATASET_NPZ_PATH, 'coco_2014_train.npz'),
'dp_coco': join(DATASET_NPZ_PATH, 'dp_coco_2014_train.npz'),
'lspet': join(DATASET_NPZ_PATH, 'hr-lspet_train.npz'),
'mpi-inf-3dhp': join(DATASET_NPZ_PATH, 'mpi_inf_3dhp_train.npz')
}
]
DATASET_FOLDERS = {
'h36m': H36M_ROOT,
'h36m-p1': H36M_ROOT,
'h36m-p2': H36M_ROOT,
'lsp-orig': LSP_ORIGINAL_ROOT,
'lsp': LSP_ROOT,
'lspet': LSPET_ROOT,
'mpi-inf-3dhp': MPI_INF_3DHP_ROOT,
'mpii': MPII_ROOT,
'coco': COCO_ROOT,
'dp_coco': COCO_ROOT,
'3dpw': PW3D_ROOT,
'upi-s1h': UPI_S1H_ROOT,
}
CUBE_PARTS_FILE = 'data/cube_parts.npy'
JOINT_REGRESSOR_TRAIN_EXTRA = 'data/J_regressor_extra.npy'
JOINT_REGRESSOR_H36M = 'data/J_regressor_h36m.npy'
VERTEX_TEXTURE_FILE = 'data/vertex_texture.npy'
STATIC_FITS_DIR = 'data/static_fits'
FINAL_FITS_DIR = 'data/final_fits'
SMPL_MEAN_PARAMS = 'data/smpl_mean_params.npz'
SMPL_MODEL_DIR = 'data/smpl'