-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests.py
480 lines (352 loc) · 16.9 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# TODO : test the function later
import numpy as np
from typing import Callable, Any
""" derivatives """
class MyCrossBackward:
def __init__(self, *args, backward_function : Callable[..., None], name : str) -> None:
self.__data = list(args)
self.__bf = backward_function
self.__name = name
""" Private """
def __str__(self) -> str:
return self.__name
def __call__(self, x) -> Any:
"""
This method is called when calling the model with the () operation.
Ex:
bcw = MyCrossBackward(...)
bcw(x) <- called here
"""
return self.run(x)
""" Public """
def run(self, base) -> None:
"""run the backward operation
Args:
base (MyTensor): basicly the tensor accumulating gradients
Returns:
None: nothing
"""
return self.__bf(base, *self.__data)
class CorrectTensor:
def __init__(self,
data : list | np.ndarray | float,
dtype : np.dtype = None,
requires_grad : bool = False,
crossOpBack : MyCrossBackward = None) -> None:
# the __ prefix mark private attributes (it can't be recovered
# outside of the class)
assert (isinstance(data, (list, np.ndarray, int))), "The given data is of an invalid type"
# code the init here (take into account the different possible input types)
# init the following properties :
self.__data : np.ndarray = data
if (isinstance(data, list) or isinstance(data, float)):
self.__data = np.array(self.__data)
self.dtype = dtype
self.requires_grad = requires_grad
self.grad = None
self.backward_op = crossOpBack
#end of code
pass
""" Properties """
""" Here an example on how to set a getter for an attribute """
@property
def shape(self):
return self.__data.shape
""" Know make it for: strides, data and size"""
@property
def data(self):
return self.__data
@property
def strides(self):
return self.__data.strides
""" Privates """
def __str__(self) -> str:
# display the data and info about the tensor
return "Tensor(" + str(self.data) + ", requires_grad=" + str(self.requires_grad) + ")"
def __repr__(self) -> str:
return self.__str__()
# as our tensor elements need to be accessible you need to make each
# function that make you object a pylist
# hint: __getitem__, __setitem__
def __getitem__(self, x):
return self.__data[x]
def __setitem__(self, x, v):
self.__data[x] = v
# the operations ? (see hints)
# the need operations for this one are : add, mul, pow, div, sub. (with tensors and scalars (int, float)).
...
""" Operations """
def __add__(self, x):
return CorrectTensor(self.__data + x.data,
requires_grad=x.requires_grad or self.requires_grad,
crossOpBack=MyCrossBackward(
self, x,
backward_function=add_deriv_soluce,
name="AddBackward"
) if x.requires_grad or self.requires_grad else None)
def __mul__(self, x):
return CorrectTensor(self.__data * x.data,
requires_grad=x.requires_grad or self.requires_grad,
crossOpBack=MyCrossBackward(
self, x,
backward_function=mul_deriv_soluce,
name="MulBackward"
) if x.requires_grad or self.requires_grad else None)
def __truediv__(self, x):
return CorrectTensor(self.__data / x.data,
requires_grad=x.requires_grad or self.requires_grad,
crossOpBack=MyCrossBackward(
self, x,
backward_function=div_deriv_soluce,
name="DivBackward"
) if x.requires_grad or self.requires_grad else None)
def __pow__(self, x):
return CorrectTensor(self.__data ** x,
requires_grad=self.requires_grad,
crossOpBack=MyCrossBackward(
self, x,
backward_function=pow_deriv_soluce,
name="PowBackward"
) if self.requires_grad else None)
def __sub__(self, x):
return CorrectTensor(self.__data - x.data,
requires_grad=x.requires_grad or self.requires_grad,
crossOpBack=MyCrossBackward(
self, x,
backward_function=sub_deriv_soluce,
name="SubBackward"
) if self.requires_grad or x.requires_grad else None)
""" Publics """
def backward(self, base = None) -> None:
"""This function call the backward on the Directed Acyclic graph
formed from the operations between the tensors.
Args:
base (MyTensor, optional): The base tensor that accumulate grads. Defaults to None.
"""
# in theory: a backward that accumulate gradient just start with a base tensor of 1 (if is None)
# code here
if (base == None):
base = CorrectTensor([1])
# end of code
if (self.backward_op):
self.backward_op(base)
# TODO : finsh backwards
#
def add_deriv_soluce(base, *tensors):
""" the tensors we will consider are only of the same shape """
left : CorrectTensor = tensors[0]
right : CorrectTensor = tensors[1]
if (left.requires_grad):
grad = CorrectTensor(base.data * np.ones_like(right.data))
if (left.backward_op == None):
left.grad = left.grad and left.grad + grad or grad
left.backward(grad)
if (right.requires_grad):
grad = CorrectTensor(base.data * np.ones_like(left.data))
if (right.backward_op == None):
right.grad = right.grad and right.grad + grad or grad
right.backward(grad)
def mul_deriv_soluce(base, *tensors):
""" tensors[0] AxB, tensors[1] BxC """
left : CorrectTensor = tensors[0]
right : CorrectTensor = tensors[1]
if left.requires_grad:
grad = CorrectTensor(base.data.T * right.data)
if (left.backward_op == None):
left.grad = left.grad and left.grad + grad or grad
left.backward(grad)
if right.requires_grad:
grad = CorrectTensor(left.data.T * base.data)
if (right.backward_op == None):
right.grad = right.grad and right.grad + grad or grad
right.backward(grad)
def div_deriv_soluce(base, *tensors):
""" tensors of the same shape """
unpacked_tensors : list[CorrectTensor] = list(tensors)
zis_tensor : bool = isinstance(unpacked_tensors[0], CorrectTensor)
is_tensor : bool = isinstance(unpacked_tensors[1], CorrectTensor)
if (zis_tensor and unpacked_tensors[0].requires_grad):
grad = CorrectTensor(base.data * (1 / (unpacked_tensors[1].data if is_tensor else unpacked_tensors[1])))
if (unpacked_tensors[0].backward_op == None):
unpacked_tensors[0].grad = unpacked_tensors[0].grad and unpacked_tensors[0].grad + grad or grad
unpacked_tensors[0].backward(grad, forced = True)
if (is_tensor and unpacked_tensors[1].requires_grad):
grad = CorrectTensor(-base.data * ((unpacked_tensors[0].data if zis_tensor else unpacked_tensors[0].data) / np.power(unpacked_tensors[1].data, 2)))
if (unpacked_tensors[1].backward_op == None):
unpacked_tensors[1].grad = unpacked_tensors[1].grad and unpacked_tensors[1].grad + grad or grad
unpacked_tensors[1].backward(grad)
def pow_deriv_soluce(base, *args):
""" tensor, power """
tensor : CorrectTensor = args[0]
pw : int = args[1]
grad = CorrectTensor(base.data * (pw * np.power(tensor.data, pw - 1)))
if tensor.backward_op == None:
tensor.grad = tensor.grad and tensor.grad + grad or grad
tensor.backward(grad)
def sub_deriv_soluce(base, *tensors):
unpacked_tensors : list[CorrectTensor] = list(tensors)
if (unpacked_tensors[0].requires_grad):
grad = CorrectTensor(base.data * np.ones_like(tensors[1].data))
if (unpacked_tensors[0].backward_op == None):
unpacked_tensors[0].grad = unpacked_tensors[0].grad and unpacked_tensors[0] + grad or grad
unpacked_tensors[0].backward(grad)
if (unpacked_tensors[1].requires_grad):
grad = CorrectTensor(-1 * base.data * np.ones_like(tensors[0].data))
if (unpacked_tensors[1].backward_op == None):
unpacked_tensors[1].grad = unpacked_tensors[1].grad and unpacked_tensors[1] + grad or grad
unpacked_tensors[1].backward(grad)
def test_tensor_class(TensorType):
# test the tensor
a = TensorType([2, 3, 2, 4])
print('Checking attributes...')
assert (hasattr(a, 'dtype')
and hasattr(a, 'requires_grad')
and hasattr(a, 'grad')
and hasattr(a, 'backward_op')), "basic attributes not found"
assert (a.requires_grad == False), "Invalid requires_grad property"
assert (a.grad == None), "Grad need to be set to None to begin with"
assert (a.backward_op == None), "Backward op need to be set to None at first"
assert (getattr(a, 'data') is not None and getattr(a, 'shape') and getattr(a, 'strides')), "properties getter not found. There should be data, shape and strides"
assert (isinstance(a.data, np.ndarray))
print('Checking list properties...')
assert (hasattr(a, '__getitem__') and hasattr(a, '__setitem__')), "The tensor does not have the possibility to retreive and set elements"
a[0] = 6
print('Checking operations...')
assert (hasattr(a, "__add__") and hasattr(a, "__mul__") and hasattr(a, "__truediv__") and hasattr(a, "__pow__") and hasattr(a, "__sub__")), "Missing operations. The operations to implement: add, div, pow, mul, sub"
b = TensorType([3, 4, 2, 5], requires_grad=True)
assert (b.requires_grad == True), "requires_grad option does not function properly"
c = a + b
assert (isinstance(c, TensorType)), "Result of addition is not a tensor"
assert (c.requires_grad == True), "requires_grad is not passed down to operation result. It should be."
assert (c[0] == 9 and c[1] == 7 and c[2] == 4 and c[3] == 9), "Addition is invalid"
assert (b.requires_grad == True), "requires_grad option does not function properly"
c2 = a * b
assert (isinstance(c2, TensorType)), "Result of mul is not a tensor"
assert (c2.requires_grad == True), "requires_grad is not passed down to operation result. It should be."
assert (c2[0] == 18 and c2[1] == 12 and c2[2] == 4 and c2[3] == 20), "mul is invalid"
c3 = a / b
assert (isinstance(c3, TensorType)), "Result of div is not a tensor"
assert (c3.requires_grad == True), "requires_grad is not passed down to operation result. It should be."
assert (c3[0] == a[0] / b[0] and c3[1] == a[1] / b[1] and c3[2] == a[2] / b[2] and c3[3] == a[3] / b[3]), "div is invalid"
c4 = b ** 2
assert (isinstance(c4, TensorType)), "Result of pow is not a tensor"
assert (c4.requires_grad == True), "requires_grad is not passed down to operation result. It should be."
assert (c4[0] == b[0] ** 2 and c4[1] == b[1] ** 2 and c4[2] == b[2] ** 2 and c4[3] == b[3] ** 2), "pow is invalid"
c5 = a - b
assert (isinstance(c5, TensorType)), "Result of sub is not a tensor"
assert (c5.requires_grad == True), "requires_grad is not passed down to operation result. It should be."
assert (c5[0] == 3 and c5[1] == -1 and c5[2] == 0 and c5[3] == -1), "sub is invalid"
print('Checking backwards...')
c.backward()
assert (b.grad != None), "Invalid grad for add backward"
assert (b.grad.data == np.array([1, 1, 1, 1])).all(), "Invalid Addition backward"
# resetting grads
b.grad = None
c2.backward()
assert (b.grad != None), "Invalid grad for mul backward"
assert (b.grad.data == np.array([6, 3, 2, 4])).all(), "Invalid mul backward for same shape mul."
b.grad = None
c3.backward()
assert (b.grad != None), "Invalid grad for div backward"
assert (b.grad.data == -a.data / np.power(b.data, 2)).all(), "Invalid div backward"
b.grad = None
c4.backward()
assert (b.grad != None), "Invalid grad for power backward"
assert (b.grad.data == 2 * b.data).all(), "Invalid power derivation"
b.grad = None
c5.backward()
assert (b.grad != None), "Invalid grad for sub backward"
assert (b.grad.data == -1 * np.ones_like(a.data)).all(), "Invalid sub backward"
class CorrectParameter:
def __init__(self, tensor :CorrectTensor) -> None:
self.tensor : CorrectTensor = tensor
self.tensor.requires_grad = True
self.__name : str = None
@property
def name(self):
return self.__name
@name.setter
def name(self, x):
self.__name = x
class CorrectModule:
def __init__(self) -> None:
self._parameters : list[CorrectParameter] = []
self._sub_modules : list[CorrectModule] = []
def __setattr__(self, __name: str, __value: Any) -> None:
if (isinstance(__value, CorrectParameter)):
__value.name = __name
self._parameters.append(__value)
if (isinstance(__value, CorrectModule) and __value != self):
self._sub_modules.append(__value)
self.__dict__.__setitem__(__name, __value)
def parameters(self):
## this function need to return the list of all parameters
params = [] + self._parameters
for i in self._sub_modules:
params += i.parameters()
return params
def test_my_module(ModuleClass, TensorClass, ParameterClass):
class SubTestModule(ModuleClass):
def __init__(self):
super().__init__()
self.param2 = ParameterClass(TensorClass([3, 4]))
class TestModule(ModuleClass):
def __init__(self):
super().__init__()
self.param1 = ParameterClass(TensorClass([2, 3]))
self.sub_module = SubTestModule()
a = TestModule()
assert (len(a.parameters()) == 2), "Parameter function is invalid"
import torch as t
def test_linear(LinearModule, TensorClass, ParameterClass):
print("Testing Linear forward..")
a = LinearModule(2, 4)
a._Linear__weights = ParameterClass(TensorClass([[2, 2], [2, 2], [2, 2], [2, 2]]))
a._Linear__bias = ParameterClass(TensorClass([2, 2, 2, 2]))
b = t.nn.Linear(2, 4)
b.weight = t.nn.Parameter(t.tensor([[2, 2], [2, 2], [2, 2], [2, 2]], dtype=t.float32))
b.bias = t.nn.Parameter(t.tensor([2, 2, 2, 2], dtype=t.float32))
y = a(TensorClass([3, 4])).data
y_ = b(t.tensor([3, 4], dtype=t.float32)).detach().numpy()
assert (y == y_).all(), "Linear result is not equivalent to torch's"
a = LinearModule(4, 1)
a._Linear__weights = ParameterClass(TensorClass([[2, 2, 2, 2]]))
a._Linear__bias = ParameterClass(TensorClass([2]))
b = t.nn.Linear(4, 1)
b.weight = t.nn.Parameter(t.tensor([[2, 2, 2, 2]], dtype=t.float32))
b.bias = t.nn.Parameter(t.tensor([2], dtype=t.float32))
y = a(TensorClass(np.array([3, 4, 5, 6]).reshape(4, 1)))
y_ = b(t.tensor([3, 4, 5, 6], dtype=t.float32))
assert (y.data == y_.detach().numpy()).all(), "Linear result is not equivalent to torch's"
print('Testing backward..')
y.backward()
y_.backward()
assert (b.weight.grad.detach().numpy() == a._Linear__weights.tensor.grad.data).all(), "Invalid backward gradients"
def test_sgd(SGD, TensorType, ParameterType):
print("Testing SGD...")
a = TensorType([3, 4, 2])
b = ParameterType(TensorType([5, 6, 7]))
op = SGD([b], lr=0.01)
(a * b.tensor).backward()
op.step()
a_torch = t.tensor([3, 4, 2], dtype=t.float32, requires_grad=True)
b_torch = t.nn.Parameter(t.tensor([5, 6, 7], dtype=t.float32, requires_grad=True))
op_torch = t.optim.SGD([b_torch], lr=0.01)
loss = t.sum(a_torch * b_torch)
loss.backward()
op_torch.step()
assert (np.allclose(b_torch.detach().numpy(), b.tensor.data)), "Invalid sgd"
def test_mseloss(MSELoss, TensorClass):
print("Testing MSE...")
y = TensorClass([3, 4, 2, 5])
y_target = TensorClass([5, 2, 5, 1])
loss = MSELoss()
res = loss(y, y_target)
y_torch = t.tensor([3, 4, 2, 5], dtype=t.float32)
y_target_torch = t.tensor([5, 2, 5, 1], dtype=t.float32)
loss = t.nn.MSELoss()
res_torch = loss(y_torch, y_target_torch)
assert (res.data == res_torch.detach().numpy()).all(), "Invalid result for MSE"
#test_tensor_class(CorrectTensor)
#
#test_my_module(CorrectModule, CorrectTensor, CorrectParameter)