forked from KwaiVGI/LivePortrait
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
493 lines (452 loc) · 25 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# coding: utf-8
"""
The entrance of the gradio for human
"""
import os
import tyro
import subprocess
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg")
if osp.exists(ffmpeg_dir):
os.environ["PATH"] += (os.pathsep + ffmpeg_dir)
if not fast_check_ffmpeg():
raise ImportError(
"FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html"
)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
# global_tab_selection = None
gradio_pipeline = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
if args.gradio_temp_dir not in (None, ''):
os.environ["GRADIO_TEMP_DIR"] = args.gradio_temp_dir
os.makedirs(args.gradio_temp_dir, exist_ok=True)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
def gpu_wrapped_execute_image_retargeting(*args, **kwargs):
return gradio_pipeline.execute_image_retargeting(*args, **kwargs)
def gpu_wrapped_execute_video_retargeting(*args, **kwargs):
return gradio_pipeline.execute_video_retargeting(*args, **kwargs)
def reset_sliders(*args, **kwargs):
return 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5, True, True
# assets
title_md = "assets/gradio/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples_i2v = [
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s2.jpg"), osp.join(example_video_dir, "d13.mp4"), True, True, True, True],
]
data_examples_v2v = [
[osp.join(example_portrait_dir, "s13.mp4"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False, 3e-7],
# [osp.join(example_portrait_dir, "s14.mp4"), osp.join(example_video_dir, "d18.mp4"), True, True, True, False, False, 3e-7],
# [osp.join(example_portrait_dir, "s15.mp4"), osp.join(example_video_dir, "d19.mp4"), True, True, True, False, False, 3e-7],
[osp.join(example_portrait_dir, "s18.mp4"), osp.join(example_video_dir, "d6.mp4"), True, True, True, False, 3e-7],
# [osp.join(example_portrait_dir, "s19.mp4"), osp.join(example_video_dir, "d6.mp4"), True, True, True, False, False, 3e-7],
[osp.join(example_portrait_dir, "s20.mp4"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False, 3e-7],
]
#################### interface logic ####################
# Define components first
retargeting_source_scale = gr.Number(minimum=1.8, maximum=3.2, value=2.5, step=0.05, label="crop scale")
video_retargeting_source_scale = gr.Number(minimum=1.8, maximum=3.2, value=2.3, step=0.05, label="crop scale")
driving_smooth_observation_variance_retargeting = gr.Number(value=3e-6, label="motion smooth strength", minimum=1e-11, maximum=1e-2, step=1e-8)
video_retargeting_silence = gr.Checkbox(value=False, label="keeping the lip silent")
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
video_lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
head_pitch_slider = gr.Slider(minimum=-15.0, maximum=15.0, value=0, step=1, label="relative pitch")
head_yaw_slider = gr.Slider(minimum=-25, maximum=25, value=0, step=1, label="relative yaw")
head_roll_slider = gr.Slider(minimum=-15.0, maximum=15.0, value=0, step=1, label="relative roll")
mov_x = gr.Slider(minimum=-0.19, maximum=0.19, value=0.0, step=0.01, label="x-axis movement")
mov_y = gr.Slider(minimum=-0.19, maximum=0.19, value=0.0, step=0.01, label="y-axis movement")
mov_z = gr.Slider(minimum=0.9, maximum=1.2, value=1.0, step=0.01, label="z-axis movement")
lip_variation_zero = gr.Slider(minimum=-0.09, maximum=0.09, value=0, step=0.01, label="pouting")
lip_variation_one = gr.Slider(minimum=-20.0, maximum=15.0, value=0, step=0.01, label="pursing 😐")
lip_variation_two = gr.Slider(minimum=0.0, maximum=15.0, value=0, step=0.01, label="grin 😁")
lip_variation_three = gr.Slider(minimum=-90.0, maximum=120.0, value=0, step=1.0, label="lip close <-> open")
smile = gr.Slider(minimum=-0.3, maximum=1.3, value=0, step=0.01, label="smile 😄")
wink = gr.Slider(minimum=0, maximum=39, value=0, step=0.01, label="wink 😉")
eyebrow = gr.Slider(minimum=-30, maximum=30, value=0, step=0.01, label="eyebrow 🤨")
eyeball_direction_x = gr.Slider(minimum=-30.0, maximum=30.0, value=0, step=0.01, label="eye gaze (horizontal) 👀")
eyeball_direction_y = gr.Slider(minimum=-63.0, maximum=63.0, value=0, step=0.01, label="eye gaze (vertical) 🙄")
retargeting_input_image = gr.Image(type="filepath")
retargeting_input_video = gr.Video()
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
retargeting_output_image = gr.Image(type="numpy")
retargeting_output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video(autoplay=False)
output_video_paste_back = gr.Video(autoplay=False)
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta Sans")])) as demo:
gr.HTML(load_description(title_md))
gr.Markdown(load_description("assets/gradio/gradio_description_upload.md"))
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("🖼️ Source Image") as tab_image:
with gr.Accordion(open=True, label="Source Image"):
source_image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
[osp.join(example_portrait_dir, "s22.jpg")],
[osp.join(example_portrait_dir, "s23.jpg")],
],
inputs=[source_image_input],
cache_examples=False,
)
with gr.TabItem("🎞️ Source Video") as tab_video:
with gr.Accordion(open=True, label="Source Video"):
source_video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s13.mp4")],
# [osp.join(example_portrait_dir, "s14.mp4")],
# [osp.join(example_portrait_dir, "s15.mp4")],
[osp.join(example_portrait_dir, "s18.mp4")],
# [osp.join(example_portrait_dir, "s19.mp4")],
[osp.join(example_portrait_dir, "s20.mp4")],
],
inputs=[source_video_input],
cache_examples=False,
)
tab_selection = gr.Textbox(visible=False)
tab_image.select(lambda: "Image", None, tab_selection)
tab_video.select(lambda: "Video", None, tab_selection)
with gr.Accordion(open=True, label="Cropping Options for Source Image or Video"):
with gr.Row():
flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)")
scale = gr.Number(value=2.3, label="source crop scale", minimum=1.8, maximum=3.2, step=0.05)
vx_ratio = gr.Number(value=0.0, label="source crop x", minimum=-0.5, maximum=0.5, step=0.01)
vy_ratio = gr.Number(value=-0.125, label="source crop y", minimum=-0.5, maximum=0.5, step=0.01)
with gr.Column():
with gr.Tabs():
with gr.TabItem("🎞️ Driving Video") as v_tab_video:
with gr.Accordion(open=True, label="Driving Video"):
driving_video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d0.mp4")],
[osp.join(example_video_dir, "d18.mp4")],
[osp.join(example_video_dir, "d19.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
[osp.join(example_video_dir, "d6.mp4")],
[osp.join(example_video_dir, "d20.mp4")],
],
inputs=[driving_video_input],
cache_examples=False,
)
with gr.TabItem("🖼️ Driving Image") as v_tab_image:
with gr.Accordion(open=True, label="Driving Image"):
driving_image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_video_dir, "d30.jpg")],
[osp.join(example_video_dir, "d9.jpg")],
[osp.join(example_video_dir, "d19.jpg")],
[osp.join(example_video_dir, "d8.jpg")],
[osp.join(example_video_dir, "d12.jpg")],
[osp.join(example_video_dir, "d38.jpg")],
],
inputs=[driving_image_input],
cache_examples=False,
)
with gr.TabItem("📁 Driving Pickle") as v_tab_pickle:
with gr.Accordion(open=True, label="Driving Pickle"):
driving_video_pickle_input = gr.File(type="filepath", file_types=[".pkl"])
gr.Examples(
examples=[
[osp.join(example_video_dir, "d1.pkl")],
[osp.join(example_video_dir, "d2.pkl")],
[osp.join(example_video_dir, "d5.pkl")],
[osp.join(example_video_dir, "d7.pkl")],
[osp.join(example_video_dir, "d8.pkl")],
],
inputs=[driving_video_pickle_input],
cache_examples=False,
)
v_tab_selection = gr.Textbox(visible=False)
v_tab_video.select(lambda: "Video", None, v_tab_selection)
v_tab_image.select(lambda: "Image", None, v_tab_selection)
v_tab_pickle.select(lambda: "Pickle", None, v_tab_selection)
# with gr.Accordion(open=False, label="Animation Instructions"):
# gr.Markdown(load_description("assets/gradio/gradio_description_animation.md"))
with gr.Accordion(open=True, label="Cropping Options for Driving Video"):
with gr.Row():
flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving)")
scale_crop_driving_video = gr.Number(value=2.2, label="driving crop scale", minimum=1.8, maximum=3.2, step=0.05)
vx_ratio_crop_driving_video = gr.Number(value=0.0, label="driving crop x", minimum=-0.5, maximum=0.5, step=0.01)
vy_ratio_crop_driving_video = gr.Number(value=-0.1, label="driving crop y", minimum=-0.5, maximum=0.5, step=0.01)
with gr.Row():
with gr.Accordion(open=True, label="Animation Options"):
with gr.Row():
flag_normalize_lip = gr.Checkbox(value=False, label="normalize lip")
flag_relative_input = gr.Checkbox(value=True, label="relative motion")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
flag_stitching_input = gr.Checkbox(value=True, label="stitching")
animation_region = gr.Radio(["exp", "pose", "lip", "eyes", "all"], value="all", label="animation region")
driving_option_input = gr.Radio(['expression-friendly', 'pose-friendly'], value="expression-friendly", label="driving option (i2v)")
driving_multiplier = gr.Number(value=1.0, label="driving multiplier (i2v)", minimum=0.0, maximum=2.0, step=0.02)
driving_smooth_observation_variance = gr.Number(value=3e-7, label="motion smooth strength (v2v)", minimum=1e-11, maximum=1e-2, step=1e-8)
gr.Markdown(load_description("assets/gradio/gradio_description_animate_clear.md"))
with gr.Row():
process_button_animation = gr.Button("🚀 Animate", variant="primary")
with gr.Row():
with gr.Column():
output_video_i2v = gr.Video(autoplay=False, label="The animated video in the original image space")
with gr.Column():
output_video_concat_i2v = gr.Video(autoplay=False, label="The animated video")
with gr.Row():
with gr.Column():
output_image_i2i = gr.Image(type="numpy", label="The animated image in the original image space", visible=False)
with gr.Column():
output_image_concat_i2i = gr.Image(type="numpy", label="The animated image", visible=False)
with gr.Row():
process_button_reset = gr.ClearButton([source_image_input, source_video_input, driving_video_pickle_input, driving_video_input, driving_image_input, output_video_i2v, output_video_concat_i2v, output_image_i2i, output_image_concat_i2i], value="🧹 Clear")
with gr.Row():
# Examples
gr.Markdown("## You could also choose the examples below by one click ⬇️")
with gr.Row():
with gr.Tabs():
with gr.TabItem("🖼️ Portrait Animation"):
gr.Examples(
examples=data_examples_i2v,
fn=gpu_wrapped_execute_video,
inputs=[
source_image_input,
driving_video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input,
],
outputs=[output_image, output_image_paste_back],
examples_per_page=len(data_examples_i2v),
cache_examples=False,
)
with gr.TabItem("🎞️ Portrait Video Editing"):
gr.Examples(
examples=data_examples_v2v,
fn=gpu_wrapped_execute_video,
inputs=[
source_video_input,
driving_video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input,
driving_smooth_observation_variance,
],
outputs=[output_image, output_image_paste_back],
examples_per_page=len(data_examples_v2v),
cache_examples=False,
)
# Retargeting Image
gr.Markdown(load_description("assets/gradio/gradio_description_retargeting.md"), visible=True)
with gr.Row(visible=True):
flag_do_crop_input_retargeting_image = gr.Checkbox(value=True, label="do crop (source)")
flag_stitching_retargeting_input = gr.Checkbox(value=True, label="stitching")
retargeting_source_scale.render()
eye_retargeting_slider.render()
lip_retargeting_slider.render()
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Facial movement sliders"):
with gr.Row(visible=True):
head_pitch_slider.render()
head_yaw_slider.render()
head_roll_slider.render()
with gr.Row(visible=True):
mov_x.render()
mov_y.render()
mov_z.render()
with gr.Column():
with gr.Accordion(open=True, label="Facial expression sliders"):
with gr.Row(visible=True):
lip_variation_zero.render()
lip_variation_one.render()
lip_variation_two.render()
with gr.Row(visible=True):
lip_variation_three.render()
smile.render()
wink.render()
with gr.Row(visible=True):
eyebrow.render()
eyeball_direction_x.render()
eyeball_direction_y.render()
with gr.Row(visible=True):
reset_button = gr.Button("🔄 Reset")
reset_button.click(
fn=reset_sliders,
inputs=None,
outputs=[
head_pitch_slider, head_yaw_slider, head_roll_slider, mov_x, mov_y, mov_z,
lip_variation_zero, lip_variation_one, lip_variation_two, lip_variation_three, smile, wink, eyebrow, eyeball_direction_x, eyeball_direction_y,
retargeting_source_scale, flag_stitching_retargeting_input, flag_do_crop_input_retargeting_image
]
)
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Image Input"):
retargeting_input_image.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
[osp.join(example_portrait_dir, "s22.jpg")],
# [osp.join(example_portrait_dir, "s23.jpg")],
[osp.join(example_portrait_dir, "s42.jpg")],
],
inputs=[retargeting_input_image],
cache_examples=False,
)
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Result"):
retargeting_output_image.render()
with gr.Column():
with gr.Accordion(open=True, label="Paste-back Result"):
retargeting_output_image_paste_back.render()
with gr.Row(visible=True):
process_button_reset_retargeting = gr.ClearButton(
[
retargeting_input_image,
retargeting_output_image,
retargeting_output_image_paste_back,
],
value="🧹 Clear"
)
# Retargeting Video
gr.Markdown(load_description("assets/gradio/gradio_description_retargeting_video.md"), visible=True)
with gr.Row(visible=True):
flag_do_crop_input_retargeting_video = gr.Checkbox(value=True, label="do crop (source)")
video_retargeting_source_scale.render()
video_lip_retargeting_slider.render()
driving_smooth_observation_variance_retargeting.render()
video_retargeting_silence.render()
with gr.Row(visible=True):
process_button_retargeting_video = gr.Button("🚗 Retargeting Video", variant="primary")
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Video Input"):
retargeting_input_video.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s13.mp4")],
# [osp.join(example_portrait_dir, "s18.mp4")],
# [osp.join(example_portrait_dir, "s20.mp4")],
[osp.join(example_portrait_dir, "s29.mp4")],
[osp.join(example_portrait_dir, "s32.mp4")],
[osp.join(example_video_dir, "d3.mp4")],
],
inputs=[retargeting_input_video],
cache_examples=False,
)
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Result"):
output_video.render()
with gr.Column():
with gr.Accordion(open=True, label="Paste-back Result"):
output_video_paste_back.render()
with gr.Row(visible=True):
process_button_reset_retargeting = gr.ClearButton(
[
video_lip_retargeting_slider,
retargeting_input_video,
output_video,
output_video_paste_back
],
value="🧹 Clear"
)
# binding functions for buttons
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
source_image_input,
source_video_input,
driving_video_input,
driving_image_input,
driving_video_pickle_input,
flag_normalize_lip,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_stitching_input,
animation_region,
driving_option_input,
driving_multiplier,
flag_crop_driving_video_input,
scale,
vx_ratio,
vy_ratio,
scale_crop_driving_video,
vx_ratio_crop_driving_video,
vy_ratio_crop_driving_video,
driving_smooth_observation_variance,
tab_selection,
v_tab_selection,
],
outputs=[output_video_i2v, output_video_i2v, output_video_concat_i2v, output_video_concat_i2v, output_image_i2i, output_image_i2i, output_image_concat_i2i, output_image_concat_i2i],
show_progress=True
)
retargeting_input_image.change(
fn=gradio_pipeline.init_retargeting_image,
inputs=[retargeting_source_scale, eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image],
outputs=[eye_retargeting_slider, lip_retargeting_slider]
)
sliders = [eye_retargeting_slider, lip_retargeting_slider, head_pitch_slider, head_yaw_slider, head_roll_slider, mov_x, mov_y, mov_z, lip_variation_zero, lip_variation_one, lip_variation_two, lip_variation_three, smile, wink, eyebrow, eyeball_direction_x, eyeball_direction_y]
for slider in sliders:
# NOTE: gradio >= 4.0.0 may cause slow response
slider.change(
fn=gpu_wrapped_execute_image_retargeting,
inputs=[
eye_retargeting_slider, lip_retargeting_slider, head_pitch_slider, head_yaw_slider, head_roll_slider, mov_x, mov_y, mov_z,
lip_variation_zero, lip_variation_one, lip_variation_two, lip_variation_three, smile, wink, eyebrow, eyeball_direction_x, eyeball_direction_y,
retargeting_input_image, retargeting_source_scale, flag_stitching_retargeting_input, flag_do_crop_input_retargeting_image
],
outputs=[retargeting_output_image, retargeting_output_image_paste_back],
)
process_button_retargeting_video.click(
fn=gpu_wrapped_execute_video_retargeting,
inputs=[video_lip_retargeting_slider, retargeting_input_video, video_retargeting_source_scale, driving_smooth_observation_variance_retargeting, video_retargeting_silence, flag_do_crop_input_retargeting_video],
outputs=[output_video, output_video_paste_back],
show_progress=True
)
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
)