Skip to content

Latest commit

 

History

History
42 lines (27 loc) · 1.24 KB

README.md

File metadata and controls

42 lines (27 loc) · 1.24 KB

Project Code for AML 2022 @ Politecnico di Torino

Team members

To run the instructions, be careful to set the correct configs for the specific configuration you want to run.

Feature Extraction

1. Extract EK-RGB features

python save_feat.py config=configs/I3D_save_feat.yaml dataset.shift=D1-D1 name=save_feat_I3D_EK

2. Resampling EMG for LSTM

python EMG/EMG_preprocessing.py

3. Extract ActionSense RGB+EMG features

python save_feat_action-net.py config=configs/I3D_save_feat.yaml dataset.shift=D1-S04 name=save_feat_I3D_AS

Training

1. Fully Connected Classifier

python train_classifier.py name=classifierD1 dataset.shift=D1-D1

using Classifier2 on model inside configs/default.yaml

2. TRN Classifier

python train_TRN.py name=classifierD1 dataset.shift=D1-D1

using TRNClassifier on model inside configs/default.yaml

3. EMG-LSTM Classifier

python EMG/EMG_train.py

4. EMG-CNN Classifier

python EMG_CNN.py

5. Multimodal Classifier

python train_multimodal.py name=classifierS04 dataset.shift=S04-S04

using configs/multi_modalities.yaml