diff --git a/pySDC/implementations/problem_classes/AllenCahn_MPIFFT.py b/pySDC/implementations/problem_classes/AllenCahn_MPIFFT.py index 13d3213851..17f770d218 100644 --- a/pySDC/implementations/problem_classes/AllenCahn_MPIFFT.py +++ b/pySDC/implementations/problem_classes/AllenCahn_MPIFFT.py @@ -23,14 +23,14 @@ class allencahn_imex(ptype): .. math:: u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{(x_i-0.5)^2 + (y_j-0.5)^2}}{\sqrt{2}\varepsilon}\right), - for :math::`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, the problem is treated + for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, the problem is treated *semi-implicitly*, i.e., the linear part is solved with Fast-Fourier Tranform (FFT) and the nonlinear part in the right-hand - side will be treated explicitly using mpi4py-fft [1]_ to solve them. + side will be treated explicitly using ``mpi4py-fft`` [1]_ to solve them. Parameters ---------- nvars : List of int tuples, optional - Number of unknowns in the problem, e.g. [(128, 128), (128, 128)]. + Number of unknowns in the problem, e.g. ``nvars=(128, 128)``. eps : float, optional Scaling parameter :math:`\varepsilon`. radius : float, optional @@ -76,12 +76,12 @@ def __init__( dw=0.0, L=1.0, init_type='circle', - comm=None, + comm=MPI.COMM_WORLD, ): """Initialization routine""" if nvars is None: - nvars = [(128, 128), (32, 32)] + nvars = (128, 128) if not (isinstance(nvars, tuple) and len(nvars) > 1): raise ProblemError('Need at least two dimensions') diff --git a/pySDC/implementations/problem_classes/generic_ND_FD.py b/pySDC/implementations/problem_classes/generic_ND_FD.py index 383b244dda..3cb7e6d7cd 100644 --- a/pySDC/implementations/problem_classes/generic_ND_FD.py +++ b/pySDC/implementations/problem_classes/generic_ND_FD.py @@ -22,7 +22,7 @@ class GenericNDimFinDiff(ptype): .. math:: \frac{d u}{dt} = A u, - where :math:`A \in \mathbb{R}^{nN \times nN} is a matrix arising from finite difference discretisation of spatial + where :math:`A \in \mathbb{R}^{nN \times nN}` is a matrix arising from finite difference discretisation of spatial derivatives with :math:`n` degrees of freedom per dimension and :math:`N` dimensions. This generic class follows the MOL (method-of-lines) approach and can be used to discretize partial differential equations such as the advection equation and the heat equation.