forked from kiri-art/docker-diffusers-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadModel.py
43 lines (35 loc) · 1.37 KB
/
loadModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import os
from diffusers import pipelines as _pipelines, StableDiffusionPipeline
from getScheduler import getScheduler, DEFAULT_SCHEDULER
from precision import revision, torch_dtype
HF_AUTH_TOKEN = os.getenv("HF_AUTH_TOKEN")
PIPELINE = os.getenv("PIPELINE")
USE_DREAMBOOTH = True if os.getenv("USE_DREAMBOOTH") == "1" else False
MODEL_IDS = [
"CompVis/stable-diffusion-v1-4",
"hakurei/waifu-diffusion",
# "hakurei/waifu-diffusion-v1-3", - not as diffusers yet
"runwayml/stable-diffusion-inpainting",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2"
"stabilityai/stable-diffusion-2-base"
"stabilityai/stable-diffusion-2-inpainting",
]
def loadModel(model_id: str, load=True):
print(("Loading" if load else "Downloading") + " model: " + model_id)
pipeline = (
StableDiffusionPipeline if PIPELINE == "ALL" else getattr(_pipelines, PIPELINE)
)
scheduler = getScheduler(model_id, DEFAULT_SCHEDULER, not load)
model = pipeline.from_pretrained(
model_id,
revision=revision,
torch_dtype=torch_dtype,
use_auth_token=HF_AUTH_TOKEN,
scheduler=scheduler,
local_files_only=load,
# Work around https://github.com/huggingface/diffusers/issues/1246
# low_cpu_mem_usage=False if USE_DREAMBOOTH else True,
)
return model.to("cuda") if load else None