-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsetup.py
110 lines (89 loc) · 3.77 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# coding=utf-8
# Copyright 2024 Pandora Media, LLC.
#
# Licensed under the GNU GPL License, Version 3.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.gnu.org/licenses/gpl-3.0.en.html
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Local imports
# None.
# Third party imports
# None.
# Python standard library imports
import setuptools
import platform
long_description = """
# MULE
The Musicset Unsupervised Large Embedding (MULE) module is your
music-audio workhorse!
This module contains [SCOOCH](https://github.com/PandoraMedia/scooch) configurable code to run a simple
analysis pipeline to extract audio embeddings from audio files which
may then be used for downstream music understanding purposes.
This module requires FFMpeg to read audio files, which may be
downloaded [here](https://ffmpeg.org/download.html).
In order to create MULE embeddings, you will need a SCOOCH configuration
describing the pipeline, and the model weights. Both are licensed under
the [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/legalcode) license, and can be found in this [module's github repository](https://github.com/PandoraMedia/music-audio-representations).
To create embeddings for a single audio file, e.g., `test.wav` in the current
directory, you can use this module in conjunction with the provided configuration
and model weights:
```
pip install sxmp-mule
git clone https://github.com/PandoraMedia/music-audio-representations.git
cd ./music-audio-representations
mule analyze --config ./supporting_data/configs/mule_embedding.yml -i ../test.wav -o ./embedding.npy
```
For more information on this module, please check out the publication:
[*Supervised and Unsupervised Learning of Audio Representations for Music Understanding*](https://arxiv.org/abs/2210.03799), **M. C. McCallum**, F. Korzeniowski, S. Oramas, F. Gouyon, A. F. Ehmann.
"""
REQUIRED_PACKAGES = [
'numpy',
'librosa==0.9.2',
'click==8.1.7',
'scooch>=1.0.4',
'tensorflow==2.13.1'
]
setuptools.setup(
name='sxmp-mule',
version='1.1.2',
description='',
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/PandoraMedia/music-audio-representations",
author="Matt C. McCallum",
author_email="[email protected]",
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Multimedia :: Sound/Audio :: Analysis',
],
project_urls={
'Documentation': 'https://github.com/PandoraMedia/music-audio-representations',
'Bug Reports': 'https://github.com/PandoraMedia/music-audio-representations/issues',
'Source': 'https://github.com/PandoraMedia/music-audio-representations',
},
license='GNU GPL 3.0',
keywords='mule audio music embeddings machine learning',
install_requires=REQUIRED_PACKAGES,
python_requires='>=3.9',
packages=setuptools.find_packages(),
include_package_data=True,
# CLI
entry_points = {
'console_scripts': ['mule=mule.cli:main']
}
)