diff --git a/python/tests/ops/test_is_finite_op.py b/python/tests/ops/test_is_finite_op.py new file mode 100644 index 0000000000..cfe9dcbc25 --- /dev/null +++ b/python/tests/ops/test_is_finite_op.py @@ -0,0 +1,116 @@ +#!/usr/bin/env python3 + +# Copyright (c) 2023 CINN Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import unittest +from op_test import OpTest, OpTestTool +from op_test_helper import TestCaseHelper +import paddle +from cinn.frontend import * +from cinn.common import * + + +@OpTestTool.skip_if(not is_compiled_with_cuda(), + "x86 test will be skipped due to timeout.") +class TestIsFiniteOp(OpTest): + def setUp(self): + print(f"\nRunning {self.__class__.__name__}: {self.case}") + self.prepare_inputs() + + def prepare_inputs(self): + self.x_np = self.random( + shape=self.case["x_shape"], + dtype=self.case["x_dtype"], + low=-100, + high=100) + + index = np.random.randint(0, len(self.x_np)) + inf_data = np.where(self.x_np[index] > 0, np.inf, np.nan) + self.x_np[index] = inf_data.astype(self.case["x_dtype"]) + + def build_paddle_program(self, target): + x = paddle.to_tensor(self.x_np, stop_gradient=True) + out = paddle.isfinite(x) + + self.paddle_outputs = [out] + + def build_cinn_program(self, target): + builder = NetBuilder("is_finite") + x = builder.create_input( + self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], + "x") + out = builder.is_finite(x) + + prog = builder.build() + + res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) + + self.cinn_outputs = [res[0]] + + def test_check_results(self): + self.check_outputs_and_grads(all_equal=True) + + +class TestIsFiniteOpShape(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestIsFiniteOpShape" + self.cls = TestIsFiniteOp + self.inputs = [{ + "x_shape": [1], + }, { + "x_shape": [1024], + }, { + "x_shape": [1, 2048], + }, { + "x_shape": [1, 1, 1], + }, { + "x_shape": [32, 64], + }, { + "x_shape": [16, 8, 4, 2], + }, { + "x_shape": [16, 8, 4, 2, 1], + }] + self.dtypes = [{ + "x_dtype": "float32", + }] + self.attrs = [] + + +class TestIsFiniteOpDtype(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestIsFiniteOpDtype" + self.cls = TestIsFiniteOp + self.inputs = [{ + "x_shape": [32, 64], + }] + self.dtypes = [{ + "x_dtype": "int32", + }, { + "x_dtype": "int64", + }, { + "x_dtype": "float16", + "max_relative_error": 1e-3 + }, { + "x_dtype": "float32", + }, { + "x_dtype": "float64", + }] + self.attrs = [] + + +if __name__ == "__main__": + TestIsFiniteOpShape().run() + TestIsFiniteOpDtype().run() diff --git a/python/tests/ops/test_is_inf_op.py b/python/tests/ops/test_is_inf_op.py new file mode 100644 index 0000000000..291066ac7a --- /dev/null +++ b/python/tests/ops/test_is_inf_op.py @@ -0,0 +1,116 @@ +#!/usr/bin/env python3 + +# Copyright (c) 2023 CINN Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import unittest +from op_test import OpTest, OpTestTool +from op_test_helper import TestCaseHelper +import paddle +from cinn.frontend import * +from cinn.common import * + + +@OpTestTool.skip_if(not is_compiled_with_cuda(), + "x86 test will be skipped due to timeout.") +class TestIsInfOp(OpTest): + def setUp(self): + print(f"\nRunning {self.__class__.__name__}: {self.case}") + self.prepare_inputs() + + def prepare_inputs(self): + self.x_np = self.random( + shape=self.case["x_shape"], + dtype=self.case["x_dtype"], + low=-100, + high=100) + + index = np.random.randint(0, len(self.x_np)) + inf_data = np.zeros(self.x_np[index].shape, dtype="float") + np.inf + self.x_np[index] = inf_data.astype(self.case["x_dtype"]) + + def build_paddle_program(self, target): + x = paddle.to_tensor(self.x_np, stop_gradient=True) + out = paddle.isinf(x) + + self.paddle_outputs = [out] + + def build_cinn_program(self, target): + builder = NetBuilder("is_inf") + x = builder.create_input( + self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], + "x") + out = builder.is_inf(x) + + prog = builder.build() + + res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) + + self.cinn_outputs = [res[0]] + + def test_check_results(self): + self.check_outputs_and_grads(all_equal=True) + + +class TestIsInfOpShape(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestIsInfOpShape" + self.cls = TestIsInfOp + self.inputs = [{ + "x_shape": [1], + }, { + "x_shape": [1024], + }, { + "x_shape": [1, 2048], + }, { + "x_shape": [1, 1, 1], + }, { + "x_shape": [32, 64], + }, { + "x_shape": [16, 8, 4, 2], + }, { + "x_shape": [16, 8, 4, 2, 1], + }] + self.dtypes = [{ + "x_dtype": "float32", + }] + self.attrs = [] + + +class TestIsInfOpDtype(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestIsInfOpDtype" + self.cls = TestIsInfOp + self.inputs = [{ + "x_shape": [32, 64], + }] + self.dtypes = [{ + "x_dtype": "int32", + }, { + "x_dtype": "int64", + }, { + "x_dtype": "float16", + "max_relative_error": 1e-3 + }, { + "x_dtype": "float32", + }, { + "x_dtype": "float64", + }] + self.attrs = [] + + +if __name__ == "__main__": + TestIsInfOpShape().run() + TestIsInfOpDtype().run() diff --git a/python/tests/ops/test_is_nan_op.py b/python/tests/ops/test_is_nan_op.py new file mode 100644 index 0000000000..4a050b8846 --- /dev/null +++ b/python/tests/ops/test_is_nan_op.py @@ -0,0 +1,116 @@ +#!/usr/bin/env python3 + +# Copyright (c) 2023 CINN Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import unittest +from op_test import OpTest, OpTestTool +from op_test_helper import TestCaseHelper +import paddle +from cinn.frontend import * +from cinn.common import * + + +@OpTestTool.skip_if(not is_compiled_with_cuda(), + "x86 test will be skipped due to timeout.") +class TestIsNanOp(OpTest): + def setUp(self): + print(f"\nRunning {self.__class__.__name__}: {self.case}") + self.prepare_inputs() + + def prepare_inputs(self): + self.x_np = self.random( + shape=self.case["x_shape"], + dtype=self.case["x_dtype"], + low=-100, + high=100) + + index = np.random.randint(0, len(self.x_np)) + nan_data = np.zeros(self.x_np[index].shape, dtype="float") + np.nan + self.x_np[index] = nan_data.astype(self.case["x_dtype"]) + + def build_paddle_program(self, target): + x = paddle.to_tensor(self.x_np, stop_gradient=True) + out = paddle.isnan(x) + + self.paddle_outputs = [out] + + def build_cinn_program(self, target): + builder = NetBuilder("is_nan") + x = builder.create_input( + self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], + "x") + out = builder.is_nan(x) + + prog = builder.build() + + res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) + + self.cinn_outputs = [res[0]] + + def test_check_results(self): + self.check_outputs_and_grads(all_equal=True) + + +class TestIsNanOpShape(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestIsNanOpShape" + self.cls = TestIsNanOp + self.inputs = [{ + "x_shape": [1], + }, { + "x_shape": [1024], + }, { + "x_shape": [1, 2048], + }, { + "x_shape": [1, 1, 1], + }, { + "x_shape": [32, 64], + }, { + "x_shape": [16, 8, 4, 2], + }, { + "x_shape": [16, 8, 4, 2, 1], + }] + self.dtypes = [{ + "x_dtype": "float32", + }] + self.attrs = [] + + +class TestIsNanOpDtype(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestIsNanOpDtype" + self.cls = TestIsNanOp + self.inputs = [{ + "x_shape": [32, 64], + }] + self.dtypes = [{ + "x_dtype": "int32", + }, { + "x_dtype": "int64", + }, { + "x_dtype": "float16", + "max_relative_error": 1e-3 + }, { + "x_dtype": "float32", + }, { + "x_dtype": "float64", + }] + self.attrs = [] + + +if __name__ == "__main__": + TestIsNanOpShape().run() + TestIsNanOpDtype().run()