-
Notifications
You must be signed in to change notification settings - Fork 9
Structural processing
KepKee edited this page May 26, 2020
·
5 revisions
Here we provide an overview of the main steps involved, and the tools available in PRIME-RE or in existing neuroimaging software packages, for the processing of NHP structural images with the goal of achieving an extracted brain mask and the segmentation masks (WM,GM and CSF). We also provide a list of existing pipelines for macaque anatomical processing for reference.
Processing Step | Available Tools |
---|---|
1. Data Preparation | |
Reorientation | FSL: Fslreorient2std, Fslswapdim + FslreorientFreesurfer: mri_convert -sphinx, mri_convert --in_orientationJip analysis toolkit: http://www.nmr.mgh.harvard.edu/~jbm/jip/jip-align/Web-based Reorient Tool: (https://neuroanatomy.github.io/reorient) |
Deoblique | AFNI: 3drefit -deoblique (for changing header information) |
Cropping | FSL: Fslroi, FSLeyes,AFNI: @clip_volume,FreeSurfer: mri_convert --slice-crop. |
Denoising | Adaptive non-local means filter denoising implemented in ANTs (ImageDenoise), SPM or Matlab package(https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising |
Averaging multiple images | Linear Registration tools: FSL-FLIRT, AFNI-3dVolReg, 3dAllineate, SPM Register, etc. Image averaging: fslmaths, SPM Imcalc, etc. |
2. Bias-Correction | |
T1xT2 bias field correction (HCP Method) | Can be implemented using standard image calculation softwares such as fslmaths based on procedures described in Rilling et al., 2011, Front Evol Neurosci. A module for this bias-correction is also available in Macapype (correct_bias.py). |
N3, N4BiasFieldCorrection | Available in ANTs, MINC, Freesurfer packages.One could also consider N3biascorrection which works better in some cases. |
FSL-Fast | FSL |
CMTK-mrbias | https://manpages.debian.org/testing/cmtk/cmtk-mrbias.1.en.html |
3. Brain Extraction | |
Template-based | AntsBrainExtraction (ANTs), Atlasbrex (https://github.com/jlohmeier/atlasBREX) |
Non Template-based | FSL-BET (can also be used with a template) bet_macaque.sh(https://github.com/neuroecology/MrCat/) |
Deep Learning Model | U-NET (https://github.com/TingsterX/PRIME-DE/tree/master/BrainExtraction/) |
Manual corrections | ITK-SNAP, BrainBox (https://brainbox.pasteur.fr/) |
4. Brain Segmentation | |
Template-based | AntsAtroposN4 script, Atropos (ANTs), SPM Segment |
Non Template-based | FSL-Fast (can be used with templates) |
Manual segmentations/corrections | ITK-SNAP, BrainBox |
5. Templates and Atlases | https://prime-re.github.io/templates_and_atlases.html |
6. Ready-to-use Pipelines | |
Civet-Macaque | https://github.com/aces/CIVET_Full_Project |
NHP-Freesurfer | https://github.com/VisionandCognition/NHP-Freesurfer/tree/public |
PREEMACS | https://github.com/pGarciaS/PREEMACS/wiki |
Macapype | https://github.com/Macatools/macapype |
Precon_all | https://github.com/recoveringyank/precon_all |
HCP-style NHP Pipeline | https://github.com/Washington-University/NHPPipelines&sa=D&ust=1588851113532000&usg=AFQjCNHdFJteT12kJx6tQuH8dxruBJUTsg |
A. Why the interest in NHP neuroimaging?
B. What makes NHP MRI challenging?
C. Typical data analysis challenges
D. Structural data processing steps and PRIME-RE tools
E. Functional data processing steps and PRIME-RE tools
F. Diffusion data processing steps and PRIME-RE tools
G. Cross-species comparisons and PRIME-RE tools