forked from OpenGVLab/VideoMAEv2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_class_finetuning.py
927 lines (849 loc) · 33.3 KB
/
run_class_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# --------------------------------------------------------
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import argparse
import datetime
import json
import os
import random
import time
from collections import OrderedDict
from functools import partial
from pathlib import Path
import deepspeed
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from timm.data.mixup import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.models import create_model
from timm.utils import ModelEma
# NOTE: Do not comment `import models`, it is used to register models
import models # noqa: F401
import utils
from dataset import build_dataset
from engine_for_finetuning import (
final_test,
merge,
train_one_epoch,
validation_one_epoch,
)
from optim_factory import (
LayerDecayValueAssigner,
create_optimizer,
get_parameter_groups,
)
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import multiple_samples_collate
def get_args():
parser = argparse.ArgumentParser(
'VideoMAE fine-tuning and evaluation script for action classification',
add_help=False)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epochs', default=30, type=int)
parser.add_argument('--update_freq', default=1, type=int)
parser.add_argument('--save_ckpt_freq', default=100, type=int)
# Model parameters
parser.add_argument(
'--model',
default='vit_base_patch16_224',
type=str,
metavar='MODEL',
help='Name of model to train')
parser.add_argument('--tubelet_size', type=int, default=2)
parser.add_argument(
'--input_size', default=224, type=int, help='images input size')
parser.add_argument(
'--with_checkpoint', action='store_true', default=False)
parser.add_argument(
'--drop',
type=float,
default=0.0,
metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument(
'--attn_drop_rate',
type=float,
default=0.0,
metavar='PCT',
help='Attention dropout rate (default: 0.)')
parser.add_argument(
'--drop_path',
type=float,
default=0.1,
metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument(
'--head_drop_rate',
type=float,
default=0.0,
metavar='PCT',
help='cls head dropout rate (default: 0.)')
parser.add_argument(
'--disable_eval_during_finetuning', action='store_true', default=False)
parser.add_argument('--model_ema', action='store_true', default=False)
parser.add_argument(
'--model_ema_decay', type=float, default=0.9999, help='')
parser.add_argument(
'--model_ema_force_cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument(
'--opt',
default='adamw',
type=str,
metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument(
'--opt_eps',
default=1e-8,
type=float,
metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument(
'--opt_betas',
default=None,
type=float,
nargs='+',
metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument(
'--clip_grad',
type=float,
default=None,
metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument(
'--momentum',
type=float,
default=0.9,
metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument(
'--weight_decay',
type=float,
default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument(
'--weight_decay_end',
type=float,
default=None,
help="""Final value of the
weight decay. We use a cosine schedule for WD and using a larger decay by
the end of training improves performance for ViTs.""")
parser.add_argument(
'--lr',
type=float,
default=1e-3,
metavar='LR',
help='learning rate (default: 1e-3)')
parser.add_argument('--layer_decay', type=float, default=0.75)
parser.add_argument(
'--warmup_lr',
type=float,
default=1e-8,
metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument(
'--min_lr',
type=float,
default=1e-6,
metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument(
'--warmup_epochs',
type=int,
default=5,
metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument(
'--warmup_steps',
type=int,
default=-1,
metavar='N',
help='num of steps to warmup LR, will overload warmup_epochs if set > 0'
)
# Augmentation parameters
parser.add_argument(
'--color_jitter',
type=float,
default=0.4,
metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument(
'--num_sample', type=int, default=2, help='Repeated_aug (default: 2)')
parser.add_argument(
'--aa',
type=str,
default='rand-m7-n4-mstd0.5-inc1',
metavar='NAME',
help=
'Use AutoAugment policy. "v0" or "original". " + "(default: rand-m7-n4-mstd0.5-inc1)'
),
parser.add_argument(
'--smoothing',
type=float,
default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument(
'--train_interpolation',
type=str,
default='bicubic',
help=
'Training interpolation (random, bilinear, bicubic default: "bicubic")'
)
# Evaluation parameters
parser.add_argument('--crop_pct', type=float, default=None)
parser.add_argument('--short_side_size', type=int, default=224)
parser.add_argument('--test_num_segment', type=int, default=10)
parser.add_argument('--test_num_crop', type=int, default=3)
# * Random Erase params
parser.add_argument(
'--reprob',
type=float,
default=0.25,
metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument(
'--remode',
type=str,
default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument(
'--recount',
type=int,
default=1,
help='Random erase count (default: 1)')
parser.add_argument(
'--resplit',
action='store_true',
default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument(
'--mixup',
type=float,
default=0.8,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument(
'--cutmix',
type=float,
default=1.0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument(
'--cutmix_minmax',
type=float,
nargs='+',
default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set')
parser.add_argument(
'--mixup_prob',
type=float,
default=1.0,
help=
'Probability of performing mixup or cutmix when either/both is enabled'
)
parser.add_argument(
'--mixup_switch_prob',
type=float,
default=0.5,
help=
'Probability of switching to cutmix when both mixup and cutmix enabled'
)
parser.add_argument(
'--mixup_mode',
type=str,
default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"'
)
# * Finetuning params
parser.add_argument(
'--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--model_key', default='model|module', type=str)
parser.add_argument('--model_prefix', default='', type=str)
parser.add_argument('--init_scale', default=0.001, type=float)
parser.add_argument('--use_mean_pooling', action='store_true')
parser.set_defaults(use_mean_pooling=True)
parser.add_argument(
'--use_cls', action='store_false', dest='use_mean_pooling')
# Dataset parameters
parser.add_argument(
'--data_path',
default='/your/data/path/',
type=str,
help='dataset path')
parser.add_argument(
'--data_root', default='', type=str, help='dataset path root')
parser.add_argument(
'--eval_data_path',
default=None,
type=str,
help='dataset path for evaluation')
parser.add_argument(
'--nb_classes',
default=400,
type=int,
help='number of the classification types')
parser.add_argument(
'--imagenet_default_mean_and_std', default=True, action='store_true')
parser.add_argument('--num_segments', type=int, default=1)
parser.add_argument('--num_frames', type=int, default=16)
parser.add_argument('--sampling_rate', type=int, default=4)
parser.add_argument('--sparse_sample', default=False, action='store_true')
parser.add_argument(
'--data_set',
default='Kinetics-400',
choices=[
'Kinetics-400', 'Kinetics-600', 'Kinetics-700', 'SSV2', 'UCF101',
'HMDB51', 'Diving48', 'Kinetics-710', 'MIT'
],
type=str,
help='dataset')
parser.add_argument(
'--fname_tmpl',
default='img_{:05}.jpg',
type=str,
help='filename_tmpl for rawframe dataset')
parser.add_argument(
'--start_idx',
default=1,
type=int,
help='start_idx for rwaframe dataset')
parser.add_argument(
'--output_dir',
default='',
help='path where to save, empty for no saving')
parser.add_argument(
'--log_dir', default=None, help='path where to tensorboard log')
parser.add_argument(
'--device',
default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument(
'--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--save_ckpt', action='store_true')
parser.add_argument(
'--no_save_ckpt', action='store_false', dest='save_ckpt')
parser.set_defaults(save_ckpt=True)
parser.add_argument(
'--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument(
'--eval', action='store_true', help='Perform evaluation only')
parser.add_argument(
'--validation', action='store_true', help='Perform validation only')
parser.add_argument(
'--dist_eval',
action='store_true',
default=False,
help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument(
'--pin_mem',
action='store_true',
help=
'Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.'
)
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument(
'--world_size',
default=1,
type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument(
'--dist_url',
default='env://',
help='url used to set up distributed training')
parser.add_argument(
'--enable_deepspeed', action='store_true', default=False)
known_args, _ = parser.parse_known_args()
if known_args.enable_deepspeed:
parser = deepspeed.add_config_arguments(parser)
ds_init = deepspeed.initialize
else:
ds_init = None
return parser.parse_args(), ds_init
def main(args, ds_init):
utils.init_distributed_mode(args)
if ds_init is not None:
utils.create_ds_config(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(
is_train=True, test_mode=False, args=args)
if args.disable_eval_during_finetuning:
dataset_val = None
else:
dataset_val, _ = build_dataset(
is_train=False, test_mode=False, args=args)
dataset_test, _ = build_dataset(is_train=False, test_mode=True, args=args)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print(
'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val,
num_replicas=num_tasks,
rank=global_rank,
shuffle=False)
sampler_test = torch.utils.data.DistributedSampler(
dataset_test,
num_replicas=num_tasks,
rank=global_rank,
shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
if args.num_sample > 1:
collate_func = partial(multiple_samples_collate, fold=False)
else:
collate_func = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
collate_fn=collate_func,
persistent_workers=True)
if dataset_val is not None:
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
persistent_workers=True)
else:
data_loader_val = None
if dataset_test is not None:
data_loader_test = torch.utils.data.DataLoader(
dataset_test,
sampler=sampler_test,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
persistent_workers=True)
else:
data_loader_test = None
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup,
cutmix_alpha=args.cutmix,
cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob,
switch_prob=args.mixup_switch_prob,
mode=args.mixup_mode,
label_smoothing=args.smoothing,
num_classes=args.nb_classes)
model = create_model(
args.model,
img_size=args.input_size,
pretrained=False,
num_classes=args.nb_classes,
all_frames=args.num_frames * args.num_segments,
tubelet_size=args.tubelet_size,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
attn_drop_rate=args.attn_drop_rate,
head_drop_rate=args.head_drop_rate,
drop_block_rate=None,
use_mean_pooling=args.use_mean_pooling,
init_scale=args.init_scale,
with_cp=args.with_checkpoint,
)
patch_size = model.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.num_frames // args.tubelet_size,
args.input_size // patch_size[0],
args.input_size // patch_size[1])
args.patch_size = patch_size
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load ckpt from %s" % args.finetune)
checkpoint_model = None
for model_key in args.model_key.split('|'):
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
for old_key in list(checkpoint_model.keys()):
if old_key.startswith('_orig_mod.'):
new_key = old_key[10:]
checkpoint_model[new_key] = checkpoint_model.pop(old_key)
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[
k].shape != state_dict[k].shape:
if checkpoint_model[k].shape[
0] == 710 and args.data_set.startswith('Kinetics'):
print(f'Convert K710 head to {args.data_set} head')
if args.data_set == 'Kinetics-400':
label_map_path = 'misc/label_710to400.json'
elif args.data_set == 'Kinetics-600':
label_map_path = 'misc/label_710to600.json'
elif args.data_set == 'Kinetics-700':
label_map_path = 'misc/label_710to700.json'
label_map = json.load(open(label_map_path))
checkpoint_model[k] = checkpoint_model[k][label_map]
else:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
all_keys = list(checkpoint_model.keys())
new_dict = OrderedDict()
for key in all_keys:
if key.startswith('backbone.'):
new_dict[key[9:]] = checkpoint_model[key]
elif key.startswith('encoder.'):
new_dict[key[8:]] = checkpoint_model[key]
else:
new_dict[key] = checkpoint_model[key]
checkpoint_model = new_dict
# interpolate position embedding
if 'pos_embed' in checkpoint_model:
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
num_patches = model.patch_embed.num_patches #
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
# height (== width) for the checkpoint position embedding
orig_size = int(
((pos_embed_checkpoint.shape[-2] - num_extra_tokens) //
(args.num_frames // model.patch_embed.tubelet_size))**0.5)
# height (== width) for the new position embedding
new_size = int(
(num_patches //
(args.num_frames // model.patch_embed.tubelet_size))**0.5)
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print("Position interpolate from %dx%d to %dx%d" %
(orig_size, orig_size, new_size, new_size))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(
-1, args.num_frames // model.patch_embed.tubelet_size,
orig_size, orig_size, embedding_size)
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
embedding_size).permute(
0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens,
size=(new_size, new_size),
mode='bicubic',
align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(
-1, args.num_frames // model.patch_embed.tubelet_size,
new_size, new_size, embedding_size)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
elif args.input_size != 224:
pos_tokens = model.pos_embed
org_num_frames = 16
T = org_num_frames // args.tubelet_size
P = int((pos_tokens.shape[1] // T)**0.5)
C = pos_tokens.shape[2]
new_P = args.input_size // patch_size[0]
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(-1, T, P, P, C)
pos_tokens = pos_tokens.reshape(-1, P, P, C).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens,
size=(new_P, new_P),
mode='bicubic',
align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3,
1).reshape(-1, T, new_P, new_P, C)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
model.pos_embed = pos_tokens # update
if args.num_frames != 16:
org_num_frames = 16
T = org_num_frames // args.tubelet_size
pos_tokens = model.pos_embed
new_T = args.num_frames // args.tubelet_size
P = int((pos_tokens.shape[1] // T)**0.5)
C = pos_tokens.shape[2]
pos_tokens = pos_tokens.reshape(-1, T, P, P, C)
pos_tokens = pos_tokens.permute(0, 2, 3, 4,
1).reshape(-1, C, T) # BHW,C,T
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=new_T, mode='linear')
pos_tokens = pos_tokens.reshape(1, P, P, C,
new_T).permute(0, 4, 1, 2, 3)
pos_tokens = pos_tokens.flatten(1, 3)
model.pos_embed = pos_tokens # update
utils.load_state_dict(
model, checkpoint_model, prefix=args.model_prefix)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters()
if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
total_batch_size = args.batch_size * args.update_freq * num_tasks
num_training_steps_per_epoch = len(dataset_train) // total_batch_size
args.lr = args.lr * total_batch_size / 256
#########scale the lr#############
args.min_lr = args.min_lr * total_batch_size / 256
args.warmup_lr = args.warmup_lr * total_batch_size / 256
#########scale the lr#############
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Update frequent = %d" % args.update_freq)
print("Number of training examples = %d" % len(dataset_train))
print("Number of training training per epoch = %d" %
num_training_steps_per_epoch)
num_layers = model_without_ddp.get_num_layers()
if args.layer_decay < 1.0:
assigner = LayerDecayValueAssigner(
list(args.layer_decay**(num_layers + 1 - i)
for i in range(num_layers + 2)))
else:
assigner = None
if assigner is not None:
print("Assigned values = %s" % str(assigner.values))
skip_weight_decay_list = model.no_weight_decay()
print("Skip weight decay list: ", skip_weight_decay_list)
if args.enable_deepspeed:
loss_scaler = None
optimizer_params = get_parameter_groups(
model, args.weight_decay, skip_weight_decay_list,
assigner.get_layer_id if assigner is not None else None,
assigner.get_scale if assigner is not None else None)
model, optimizer, _, _ = ds_init(
args=args,
model=model,
model_parameters=optimizer_params,
dist_init_required=not args.distributed,
)
print("model.gradient_accumulation_steps() = %d" %
model.gradient_accumulation_steps())
assert model.gradient_accumulation_steps() == args.update_freq
else:
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
optimizer = create_optimizer(
args,
model_without_ddp,
skip_list=skip_weight_decay_list,
get_num_layer=assigner.get_layer_id
if assigner is not None else None,
get_layer_scale=assigner.get_scale
if assigner is not None else None)
loss_scaler = NativeScaler()
print("Use step level LR scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr,
args.min_lr,
args.epochs,
num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs,
warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(args.weight_decay,
args.weight_decay_end,
args.epochs,
num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" %
(max(wd_schedule_values), min(wd_schedule_values)))
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
utils.auto_load_model(
args=args,
model=model,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
model_ema=model_ema)
if args.validation:
test_stats = validation_one_epoch(data_loader_val, model, device)
print(
f"{len(dataset_val)} val images: Top-1 {test_stats['acc1']:.2f}%, Top-5 {test_stats['acc5']:.2f}%, loss {test_stats['loss']:.4f}"
)
exit(0)
if args.eval:
preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt')
test_stats = final_test(data_loader_test, model, device, preds_file)
torch.distributed.barrier()
if global_rank == 0:
print("Start merging results...")
final_top1, final_top5 = merge(args.output_dir, num_tasks)
print(
f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%"
)
log_stats = {'Final top-1': final_top1, 'Final Top-5': final_top5}
if args.output_dir and utils.is_main_process():
with open(
os.path.join(args.output_dir, "log.txt"),
mode="a",
encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch *
args.update_freq)
train_stats = train_one_epoch(
model,
criterion,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
args.clip_grad,
model_ema,
mixup_fn,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
num_training_steps_per_epoch=num_training_steps_per_epoch,
update_freq=args.update_freq,
)
if args.output_dir and args.save_ckpt:
_epoch = epoch + 1
if _epoch % args.save_ckpt_freq == 0 or _epoch == args.epochs:
utils.save_model(
args=args,
model=model,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
model_ema=model_ema)
if data_loader_val is not None:
test_stats = validation_one_epoch(data_loader_val, model, device)
print(
f"Accuracy of the network on the {len(dataset_val)} val images: {test_stats['acc1']:.2f}%"
)
if max_accuracy < test_stats["acc1"]:
max_accuracy = test_stats["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args,
model=model,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch="best",
model_ema=model_ema)
print(f'Max accuracy: {max_accuracy:.2f}%')
if log_writer is not None:
log_writer.update(
val_acc1=test_stats['acc1'], head="perf", step=epoch)
log_writer.update(
val_acc5=test_stats['acc5'], head="perf", step=epoch)
log_writer.update(
val_loss=test_stats['loss'], head="perf", step=epoch)
log_stats = {
**{f'train_{k}': v
for k, v in train_stats.items()},
**{f'val_{k}': v
for k, v in test_stats.items()}, 'epoch': epoch,
'n_parameters': n_parameters
}
else:
log_stats = {
**{f'train_{k}': v
for k, v in train_stats.items()}, 'epoch': epoch,
'n_parameters': n_parameters
}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(
os.path.join(args.output_dir, "log.txt"),
mode="a",
encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt')
test_stats = final_test(data_loader_test, model, device, preds_file)
torch.distributed.barrier()
if global_rank == 0:
print("Start merging results...")
final_top1, final_top5 = merge(args.output_dir, num_tasks)
print(
f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%"
)
log_stats = {'Final top-1': final_top1, 'Final Top-5': final_top5}
if args.output_dir and utils.is_main_process():
with open(
os.path.join(args.output_dir, "log.txt"),
mode="a",
encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts, ds_init = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts, ds_init)