-
Notifications
You must be signed in to change notification settings - Fork 1
/
Image.h
623 lines (550 loc) · 21.1 KB
/
Image.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Astrophysics Science Division,
// NASA/ Goddard Space Flight Center
// HEASARC
// http://heasarc.gsfc.nasa.gov
// e-mail: [email protected]
//
// Original author: Ben Dorman
#ifndef IMAGE_H
#define IMAGE_H 1
// functional
#include <functional>
// valarray
#include <valarray>
// vector
#include <vector>
// numeric
#include <numeric>
#include <sstream>
#ifdef _MSC_VER
#include "MSconfig.h" //form std::min
#endif
#include "CCfits.h"
#include "FitsError.h"
#include "FITSUtil.h"
namespace CCfits {
template <typename T>
class Image
{
public:
Image(const Image< T > &right);
Image (const std::valarray<T>& imageArray = std::valarray<T>());
~Image();
Image< T > & operator=(const Image< T > &right);
const std::valarray<T>& readImage (fitsfile* fPtr, long first, long nElements, T* nullValue, const std::vector<long>& naxes, bool& nulls);
const std::valarray<T>& readImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, T* nullValue, const std::vector<long>& naxes, bool& nulls);
// If write operation causes an expansion of the image's outer-most dimension, newNaxisN will be set to the new value. Else it will be 0.
void writeImage (fitsfile* fPtr, long first, long nElements, const std::valarray<T>& inData, const std::vector<long>& naxes, long& newNaxisN, T* nullValue = 0);
void writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, const std::vector<long>& naxes, long& newNaxisN);
void writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::valarray<T>& inData, const std::vector<long>& naxes, long& newNaxisN);
bool isRead () const;
// This allows higher level classes to notify Image that a user-input
// scaling value has changed. Image can then decide how this
// should affect reading from cache vs. disk.
void scalingHasChanged();
// Give the user (via higher level classes) a way to explicitly set the m_isRead flag
// to false, thus providing a fail-safe override of reading from the cache.
void resetRead();
const std::valarray< T >& image () const;
// Additional Public Declarations
protected:
// Additional Protected Declarations
private:
std::valarray<T>& image ();
void prepareForSubset (const std::vector<long>& naxes, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, std::valarray<T>& subset);
void loop (size_t iDim, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, size_t iPos, const std::vector<size_t>& incr, const std::valarray<T>& inData, size_t& iDat, const std::vector<size_t>& subIncr, std::valarray<T>& subset, size_t iSub);
bool isNullValChanged(T* newNull) const;
void setLastNullInfo(T* newNull);
// Additional Private Declarations
private: //## implementation
// Data Members for Class Attributes
// When m_isRead = true, assume m_fullImageCache contains the full image from the file.
bool m_isRead;
// Information regarding the usage of null values for the
// most recent read operation.
bool m_usingNullVal;
T m_lastNullVal;
// Data Members for Associations
std::valarray< T > m_fullImageCache;
std::valarray<T> m_currentRead;
// Additional Implementation Declarations
};
// Parameterized Class CCfits::Image
template <typename T>
inline bool Image<T>::isRead () const
{
return m_isRead;
}
template <typename T>
inline const std::valarray< T >& Image<T>::image () const
{
return m_fullImageCache;
}
// Parameterized Class CCfits::Image
template <typename T>
Image<T>::Image(const Image<T> &right)
: m_isRead(right.m_isRead),
m_usingNullVal(right.m_usingNullVal),
m_lastNullVal(right.m_lastNullVal),
m_fullImageCache(right.m_fullImageCache),
m_currentRead(right.m_currentRead)
{
}
template <typename T>
Image<T>::Image (const std::valarray<T>& imageArray)
: m_isRead(false),
m_usingNullVal(false),
m_lastNullVal(0),
m_fullImageCache(imageArray),
m_currentRead()
{
}
template <typename T>
Image<T>::~Image()
{
}
template <typename T>
Image<T> & Image<T>::operator=(const Image<T> &right)
{
// all stack allocated.
m_isRead = right.m_isRead;
m_usingNullVal = right.m_usingNullVal,
m_lastNullVal = right.m_lastNullVal,
m_fullImageCache.resize(right.m_fullImageCache.size());
m_fullImageCache = right.m_fullImageCache;
m_currentRead.resize(right.m_currentRead.size());
m_currentRead = right.m_currentRead;
return *this;
}
template <typename T>
const std::valarray<T>& Image<T>::readImage (fitsfile* fPtr, long first, long nElements, T* nullValue, const std::vector<long>& naxes, bool& nulls)
{
if (!naxes.size())
{
m_currentRead.resize(0);
return m_currentRead;
}
unsigned long init(1);
unsigned long nTotalElements(std::accumulate(naxes.begin(),naxes.end(),init,
std::multiplies<long>()));
if (first <= 0)
{
string errMsg("*** CCfits Error: For image read, lowest allowed value for first element is 1.\n");
bool silent = false;
throw FitsException(errMsg, silent);
}
// 0-based index for slice
unsigned long start = (unsigned long)first - 1;
if (start >= nTotalElements)
{
string errMsg("*** CCfits Error: For image read, starting element is out of range.\n");
bool silent = false;
throw FitsException(errMsg, silent);
}
if (nElements < 0)
{
string errMsg("*** CCfits Error: Negative nElements value specified for image read.\n");
bool silent = false;
throw FitsException(errMsg, silent);
}
const unsigned long elementsRequested = (unsigned long)nElements;
int status(0);
int any (0);
FITSUtil::MatchType<T> imageType;
// truncate to valid array size if too much data asked for.
unsigned long elementsToRead(std::min(elementsRequested,
nTotalElements - start));
if ( elementsToRead < elementsRequested)
{
std::cerr <<
"***CCfits Warning: data request exceeds image size, truncating\n";
}
const bool isFullRead = (elementsToRead == nTotalElements);
const bool isDifferentNull = isNullValChanged(nullValue);
if (!m_isRead || isDifferentNull)
{
// Must perform a read from disk.
m_isRead = false;
if (isFullRead)
{
m_fullImageCache.resize(elementsToRead);
if (fits_read_img(fPtr,imageType(),first,elementsToRead,
nullValue,&m_fullImageCache[0],&any,&status) != 0) throw FitsError(status);
m_isRead = true;
// For this case only, we'll pass m_fullImageCache back up (to be
// copied into user-supplied array). This spares having to do
// what may be a very large copy into m_currentRead.
}
else
{
m_fullImageCache.resize(0);
m_currentRead.resize(elementsToRead);
if (fits_read_img(fPtr,imageType(),first,elementsToRead,
nullValue,&m_currentRead[0],&any,&status) != 0) throw FitsError(status);
}
nulls = (any != 0);
setLastNullInfo(nullValue);
}
else
{
if (!isFullRead)
{
m_currentRead.resize((size_t)elementsToRead);
// This may be a costly copy, though should still be faster
// than disk read.
m_currentRead = m_fullImageCache[std::slice((size_t)start, (size_t)elementsToRead,1)];
}
}
if (isFullRead)
return m_fullImageCache;
return m_currentRead;
}
template <typename T>
const std::valarray<T>& Image<T>::readImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, T* nullValue, const std::vector<long>& naxes, bool& nulls)
{
const size_t N = naxes.size();
if (!N)
{
m_currentRead.resize(0);
return m_currentRead;
}
if (N != firstVertex.size() || N != lastVertex.size() || N != stride.size())
{
string errMsg("*** CCfits Error: Image read function requires that naxes, firstVertex,");
errMsg += " \nlastVertex, and stride vectors all be the same size.\n";
bool silent = false;
throw FitsException(errMsg, silent);
}
FITSUtil::CVarray<long> carray;
int any(0);
int status(0);
long requestedSize=1;
long nTotalSize=1;
for (size_t j = 0; j < N; ++j)
{
// Intentional truncation during division.
requestedSize *= ((lastVertex[j] - firstVertex[j])/stride[j] + 1);
nTotalSize *= naxes[j];
if (firstVertex[j] < 1 || lastVertex[j] > naxes[j])
{
string errMsg("*** CCfits Error: Out-of-bounds vertex value.\n");
bool silent=false;
throw FitsException(errMsg,silent);
}
if (firstVertex[j] > lastVertex[j])
{
string errMsg("*** CCfits Error: firstVertex values must not be larger than corresponding lastVertex values.\n");
bool silent = false;
throw FitsException(errMsg,silent);
}
}
const bool isFullRead = (requestedSize == nTotalSize);
const bool isDifferentNull = isNullValChanged(nullValue);
if (!m_isRead || isDifferentNull)
{
// Must perform a read from disk.
FITSUtil::auto_array_ptr<long> pFpixel(carray(firstVertex));
FITSUtil::auto_array_ptr<long> pLpixel(carray(lastVertex));
FITSUtil::auto_array_ptr<long> pStride(carray(stride));
FITSUtil::MatchType<T> imageType;
m_isRead = false;
if (isFullRead)
{
m_fullImageCache.resize(requestedSize);
if (fits_read_subset(fPtr,imageType(),
pFpixel.get(),pLpixel.get(),
pStride.get(),nullValue,&m_fullImageCache[0],&any,&status) != 0)
throw FitsError(status);
m_isRead = true;
}
else
{
m_currentRead.resize(requestedSize);
if (fits_read_subset(fPtr,imageType(),
pFpixel.get(),pLpixel.get(),
pStride.get(),nullValue,&m_currentRead[0],&any,&status) != 0)
throw FitsError(status);
}
nulls = (any != 0);
setLastNullInfo(nullValue);
}
else
{
if (!isFullRead)
{
// Must convert firstVertex,lastVertex,stride to gslice parameters.
// Note that in cfitsio, the NAXIS1 dimension varies the fastest
// when laid out in an array in memory (ie. Fortran style). Therefore NAXISn
// ordering must be reversed to C style before passing to gslice.
size_t startPos=0;
std::valarray<size_t> gsliceLength(size_t(0),N);
std::valarray<size_t> gsliceStride(size_t(0),N);
std::vector<long> naxesProducts(N);
long accum=1;
for (size_t i=0; i<N; ++i)
{
naxesProducts[i] = accum;
accum *= naxes[i];
}
for (size_t i=0; i<N; ++i)
{
startPos += static_cast<size_t>((firstVertex[i]-1)*naxesProducts[i]);
// Here's where we reverse the order:
const size_t gsPos = N-1-i;
// Division truncation is intentional.
gsliceLength[gsPos] = static_cast<size_t>((1 + (lastVertex[i]-firstVertex[i])/stride[i]));
gsliceStride[gsPos] = static_cast<size_t>(stride[i]*naxesProducts[i]);
}
m_currentRead.resize(requestedSize);
m_currentRead = m_fullImageCache[std::gslice(startPos, gsliceLength, gsliceStride)];
}
}
if (isFullRead)
return m_fullImageCache;
return m_currentRead;
}
template <typename T>
void Image<T>::writeImage (fitsfile* fPtr, long first, long nElements, const std::valarray<T>& inData, const std::vector<long>& naxes, long& newNaxisN, T* nullValue)
{
int status(0);
if (first < 1 || nElements < 1)
{
string errMsg("*** CCfits Error: first and nElements values must be > 0\n");
bool silent = false;
throw FitsException(errMsg, silent);
}
FITSUtil::CAarray<T> convert;
FITSUtil::auto_array_ptr<T> pArray(convert(inData));
T* array = pArray.get();
m_isRead = false;
newNaxisN = 0;
FITSUtil::MatchType<T> imageType;
long type(imageType());
if (fits_write_imgnull(fPtr,type,first,nElements,array,
nullValue,&status)!= 0)
{
throw FitsError(status);
}
const size_t nDim=naxes.size();
long origTotSize=1;
for (size_t i=0; i<nDim; ++i)
origTotSize *= naxes[i];
const long highestOutputElem = first + nElements - 1;
if (highestOutputElem > origTotSize)
{
// NAXIS(nDIM) may have increased.
std::ostringstream oss;
oss <<"NAXIS" << nDim;
string keyname(oss.str());
long newVal = 1 + (highestOutputElem-1)/(origTotSize/naxes[nDim-1]);
if (newVal != naxes[nDim-1])
{
if (fits_update_key(fPtr,TLONG,(char *)keyname.c_str(),&newVal,0,&status) != 0)
{
throw FitsError(status);
}
newNaxisN = newVal;
}
}
if (fits_flush_file(fPtr,&status) != 0)
throw FitsError(status);
}
template <typename T>
void Image<T>::writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, const std::vector<long>& naxes, long& newNaxisN)
{
// input vectors' size equality will be verified in prepareForSubset.
const size_t nDim = naxes.size();
FITSUtil::auto_array_ptr<long> pFPixel(new long[nDim]);
FITSUtil::auto_array_ptr<long> pLPixel(new long[nDim]);
std::valarray<T> subset;
m_isRead = false;
newNaxisN = 0;
prepareForSubset(naxes,firstVertex,lastVertex,stride,inData,subset);
long* fPixel = pFPixel.get();
long* lPixel = pLPixel.get();
for (size_t i=0; i<nDim; ++i)
{
fPixel[i] = firstVertex[i];
lPixel[i] = lastVertex[i];
}
FITSUtil::CAarray<T> convert;
FITSUtil::auto_array_ptr<T> pArray(convert(subset));
T* array = pArray.get();
FITSUtil::MatchType<T> imageType;
int status(0);
if ( fits_write_subset(fPtr,imageType(),fPixel,lPixel,array,&status) )
throw FitsError(status);
if (lPixel[nDim-1] > naxes[nDim-1])
{
std::ostringstream oss;
oss << "NAXIS" << nDim;
string keyname(oss.str());
long newVal = lPixel[nDim-1];
if (fits_update_key(fPtr,TLONG,(char *)keyname.c_str(),&newVal,0,&status) != 0)
{
throw FitsError(status);
}
newNaxisN = lPixel[nDim-1];
}
if (fits_flush_file(fPtr,&status) != 0)
throw FitsError(status);
}
template <typename T>
std::valarray<T>& Image<T>::image ()
{
return m_fullImageCache;
}
template <typename T>
void Image<T>::prepareForSubset (const std::vector<long>& naxes, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, std::valarray<T>& subset)
{
// naxes, firstVertex, lastVertex, and stride must all be the same size.
const size_t N = naxes.size();
if (N != firstVertex.size() || N != lastVertex.size() || N != stride.size())
{
string errMsg("*** CCfits Error: Image write function requires that naxes, firstVertex,");
errMsg += " \nlastVertex, and stride vectors all be the same size.\n";
bool silent = false;
throw FitsException(errMsg, silent);
}
for (size_t i=0; i<N; ++i)
{
if (naxes[i] < 1)
{
bool silent = false;
throw FitsException("*** CCfits Error: Invalid naxes value sent to image write function.\n", silent);
}
string rangeErrMsg("*** CCfits Error: Out-of-range value sent to image write function in arg: ");
if (firstVertex[i] < 1 || (firstVertex[i] > naxes[i] && i != N-1))
{
bool silent = false;
rangeErrMsg += "firstVertex\n";
throw FitsException(rangeErrMsg, silent);
}
if (lastVertex[i] < firstVertex[i] || (lastVertex[i] > naxes[i] && i != N-1))
{
bool silent = false;
rangeErrMsg += "lastVertex\n";
throw FitsException(rangeErrMsg, silent);
}
if (stride[i] < 1)
{
bool silent = false;
rangeErrMsg += "stride\n";
throw FitsException(rangeErrMsg, silent);
}
}
// nPoints refers to the subset of the image INCLUDING the zero'ed elements
// resulting from the stride parameter.
// subSizeWithStride refers to the same subset, not counting the zeros.
size_t subSizeWithStride = 1;
size_t nPoints = 1;
std::vector<size_t> subIncr(N);
for (size_t i=0; i<N; ++i)
{
subIncr[i] = nPoints;
nPoints *= static_cast<size_t>(1+lastVertex[i]-firstVertex[i]);
subSizeWithStride *= static_cast<size_t>(1+(lastVertex[i]-firstVertex[i])/stride[i]);
}
subset.resize(nPoints, 0);
if (subSizeWithStride != inData.size())
{
bool silent = false;
string errMsg("*** CCfits Error: Data array size is not consistent with the values");
errMsg += "\n in range and stride vectors sent to the image write function.\n";
throw FitsException(errMsg, silent);
}
size_t startPoint = 0;
size_t dimMult = 1;
std::vector<size_t> incr(N);
for (size_t j = 0; j < N; ++j)
{
startPoint += dimMult*(firstVertex[j]-1);
incr[j] = dimMult;
dimMult *= static_cast<size_t>(naxes[j]);
}
size_t inDataPos = 0;
size_t iSub = 0;
loop(N-1, firstVertex, lastVertex, stride, startPoint, incr, inData, inDataPos, subIncr, subset, iSub);
}
template <typename T>
void Image<T>::loop (size_t iDim, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, size_t iPos, const std::vector<size_t>& incr, const std::valarray<T>& inData, size_t& iDat, const std::vector<size_t>& subIncr, std::valarray<T>& subset, size_t iSub)
{
size_t start = static_cast<size_t>(firstVertex[iDim]);
size_t stop = static_cast<size_t>(lastVertex[iDim]);
size_t skip = static_cast<size_t>(stride[iDim]);
if (iDim == 0)
{
size_t length = stop - start + 1;
for (size_t i=0; i<length; i+=skip)
{
subset[i+iSub] = inData[iDat++];
}
}
else
{
size_t jump = incr[iDim]*skip;
size_t subJump = subIncr[iDim]*skip;
for (size_t i=start; i<=stop; i+=skip)
{
loop(iDim-1, firstVertex, lastVertex, stride, iPos, incr, inData, iDat, subIncr, subset, iSub);
iPos += jump;
iSub += subJump;
}
}
}
template <typename T>
bool Image<T>::isNullValChanged(T* newNull) const
{
bool isChanged = false;
if (m_usingNullVal)
{
// If m_usingNullVal is true, we can assume m_lastNullVal != 0.
if (newNull)
{
T newVal = *newNull;
if (newVal != m_lastNullVal)
isChanged = true;
}
else
isChanged = true;
}
else
{
if (newNull && (*newNull != 0))
isChanged = true;
}
return isChanged;
}
template <typename T>
void Image<T>::setLastNullInfo(T* newNull)
{
if (!newNull || *newNull == 0)
{
m_usingNullVal = false;
m_lastNullVal = 0;
}
else
{
m_usingNullVal = true;
m_lastNullVal = *newNull;
}
}
template <typename T>
void Image<T>::writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::valarray<T>& inData, const std::vector<long>& naxes, long& newNaxisN)
{
std::vector<long> stride(firstVertex.size(), 1);
writeImage(fPtr, firstVertex, lastVertex, stride, inData, naxes, newNaxisN);
}
template <typename T>
void Image<T>::scalingHasChanged()
{
m_isRead = false;
}
template <typename T>
void Image<T>::resetRead()
{
m_isRead = false;
}
// Additional Declarations
} // namespace CCfits
#endif