-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataManager.py
436 lines (309 loc) · 11.7 KB
/
dataManager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import pandas as pd
import numpy as np
from sklearn import preprocessing
import json
import os
import pickle
import tables
import faiss
import featurizer , fastTextUtils , gbmModel
import ast
import time
from tqdm import tqdm
class DataManager():
def __init__(self , jsons_path = "./data" , emb_dim = 200 , model_fasttext = "" , lgb_path = "" , lgb_name = "Concat" , refresh = False ):
# This is the main class of the palmu module. It holds the necesary methods to build the models, make the queries and so on
self.model_fasttext = fastTextUtils.FastTextUtils( model_fasttext )
self.emb_dim = self.model_fasttext.dim
# load GBM models, this will be used for prediction of probabibilities later on, the code assumes the existence of pretrained
# models existing in the lgb_path folder, the pretrained models must contain in their name, the word pass name parameter
self.model_lgbm = gbmModel.GBMModel( path = lgb_path , name = lgb_name )
# creating auxiliar paths
self.jsons_path = jsons_path
self.hdf_path = self.jsons_path + "/hdf_emb.h5"
self.hdf5_file = None
self.mappings_path = self.jsons_path + "/mappings200.map"
self.mappings = dict()
self.featurizer_path = self.jsons_path + "/featurizer.ft"
#self.featurizer = pickle.load( open( self.featurizer_path , "rb"))
self.featurizer = featurizer.Featurizer( self.model_fasttext.model , self.model_fasttext.dim )
pickle.dump( self.featurizer , open( self.featurizer_path , "wb" ) , protocol=2 )
self.dependencies_dict_path = self.jsons_path + "/dependencies_dict.bin"
self.dependencies_dict = {}
start = time.time()
self.load_projects2( refresh = refresh )
end = time.time()
time_difference = end - start
print("Time diff:" , time_difference )
return None
def delete_files(self):
if os.path.exists( self.hdf_path ):
if self.hdf5_file is not None:
self.hdf5_file.close()
os.remove( self.hdf_path )
if os.path.exists( self.mappings_path ):
os.remove( self.mappings_path )
if os.path.exists( self.featurizer_path):
os.remove( self.featurizer_path )
def load_projects2(self , refresh = False ):
self.process_files( refresh = refresh )
if self.ready:
self.load_HDF5()
self.indexSize = 0
self.build_index()
self.indexSize = self.data.shape[0] - 1
def build_index( self ):
#builds the search index
# Dimenstion of the vectors
D = self.featurizer.final_size
self.index = faiss.IndexFlatIP( D )
self.index.train( self.norm_vec(self.data) )
self.index.add( self.norm_vec( self.data) )
print( "Index Trained" , self.index.is_trained)
def norm_vec( self , a ):
# function to normalize vectors
a = a / np.sqrt( (a*a).sum(axis = 1 ) ).reshape( a.shape[0] , 1 )
return np.nan_to_num( a )
def prune_index( self , I , qtid ):
# prune the index to remove the already know dependencies.
new_index = []
n1 = len( I[0][1:] )
for issue in I[0][1:]:
if issue in self.inverse_mapping.keys():
proposed_id = self.inverse_mapping[ issue ]
if qtid not in self.dependencies_dict.keys():
new_index.append ( issue )
continue
if proposed_id in self.dependencies_dict[ qtid ]:
continue
else:
new_index.append( issue )
n2 = len( new_index )
diff = n1 - n2
print( "Pruned ids" , diff )
return new_index
def find_by_id( self , qtid , k = 5 , k2 = 20 , multiplier = 1 ):
# return list of know issues
# if the id is not in the index, return an empty list
if not qtid in self.mappings:
return []
# ind, index od the vector
index_id = self.mappings[ qtid ]
vector = self.data[ index_id , : ].reshape( (1 , self.featurizer.final_size ))
#print( vector.shape )
distances , I = self.index.search( self.norm_vec( vector ) , k )
new_index = self.prune_index( I , qtid )
#print( I )
found_issues = []
# prepare data for the GBM models
data_lgb = np.zeros( ( len( I[0][1:] ) , 2*self.featurizer.final_size ))
i = 0
partial_map = {}
for issue in new_index :
# issue is an index
emb_candidate = self.data[ issue , : ].reshape( 1 , self.featurizer.final_size )
data_point = np.hstack( [ vector , emb_candidate ] )
data_lgb[ i , : ] = data_point
partial_map[ i] = issue
i += 1
top_indexs , scores = self.model_lgbm.get_top_k( data_lgb , k = k2 )
print( partial_map )
for index , score in zip( top_indexs , scores ) :
issue = partial_map[index]
if issue in self.inverse_mapping:
json_obj = self.parse_issue( qtid , self.inverse_mapping[issue] , score , multiplier )
found_issues.append( json_obj )
# return the list of found ids
return found_issues
def parse_issue( self , qtid , dup , score = "" , multiplier = 1.0 ):
if dup not in self.dependencies_dict.keys():
score = score*multiplier
results = {}
results["created_at"] = "0"
results["dependency_type"] = "SIMILAR"
results["dependency_score"] = str(score)
results["description"] = ["palmu"]
results["fromid"] = qtid
results["id"] = "{}_{}_SIMILAR".format( qtid , dup )
results["status"] = "PROPOSED"
results["toid"] = dup
return results
def add_or_update_reqs(self , list_new_reqs ):
if not os.path.exists( self.hdf_path):
self.load_projects2( False )
return True
if self.hdf5_file is not None:
self.hdf5_file.close() # for safety
self.hdf5_file = tables.open_file( self.hdf_path , mode = "r+") # re open
#
i = 0
print("updating requirements:")
for req in tqdm( list_new_reqs ):
query_id = req["id"]
embedding = self.featurizer.featurize( req )
embedding = embedding.reshape( ( 1 , 100 ))
embedding = self.norm_vec( embedding )
if query_id in self.mappings.keys():
# Idd already exists in dataset
#
indexId = self.mappings[query_id]
# after we get the embedding
self.hdf5_file.root.data[ indexId , : ] = embedding
else:
#
self.hdf5_file.root.data.append( embedding )
newIndex = len( self.hdf5_file.root.data[:] ) - 1
#print( newIndex )
self.mappings[query_id] = newIndex
i += 1
# save the modified mappings
files = os.listdir( self.jsons_path )
files_json = [ self.jsons_path+"/"+f for f in files if ".json" in f ]
if len( files_json) == 0:
self.ready = False
return False
self.dependencies_dict = self.get_dependencies_dict( files_json )
pickle.dump( self.dependencies_dict , open( self.dependencies_dict_path ,"wb") , protocol = 2 )
pickle.dump( self.mappings , open( self.mappings_path, "wb" ) , protocol=2 )
print("updates")
print( "number of keys:" , len( self.mappings.keys() ))
print( "number of reqss:" , len( self.hdf5_file.root.data[:]))
self.hdf5_file.close()
self.load_HDF5()
return True
def find_by_new( self , openreqJson , k = 1000 , k2 = 11 ):
# openredJson must be a valid openreqJson
newId = openreqJson["id"]
# if the ID exists in the mappings run the
if newId in self.mappings:
return self.find_by_id( newId , k , k2 )
# Get the embedding for the new json
embedding = self.featurizer.featurize( openreqJson )
if embedding is None :
# is the embedding is null
return []
else:
self.add_or_update_reqs( [ openreqJson] )
issues = self.find_by_id( newId , k , k2 )
return issues
def process_files( self , refresh = False ):
# this function saves on disk the mappings in between the vector embeddings and the
# List existing files on data folder ,
if refresh:
self.delete_files()
if os.path.isfile( self.hdf_path ):
self.mappings = pickle.load( open( self.mappings_path , "rb") )
self.inverse_mapping = {v: k for k, v in self.mappings.items()}
self.featurizer = pickle.load( open( self.featurizer_path , "rb"))
self.dependencies_dict = pickle.load( open( self.dependencies_dict_path , "rb"))
#print( self.dependencies_dict )
self.load_HDF5()
print( "File already exists ! loaded ")
self.ready = True
else:
files = os.listdir( self.jsons_path )
files_json = [ self.jsons_path+"/"+f for f in files if ".json" in f ]
if ( len(files_json) == 0 ):
# there are no files to build, do nothing.
self.ready = False
return
#print("Processing Json Files")
embs , mapp = self.get_embeddings( files_json )
self.dependencies_dict = self.get_dependencies_dict( files_json )
self.mappings = mapp
self.inverse_mapping = {v: k for k, v in self.mappings.items() }
# load an embeddings array
embs = np.array( embs )
# save mappings to disk
pickle.dump( mapp , open( self.mappings_path, "wb" ) , protocol=2 )
pickle.dump( self.dependencies_dict , open( self.dependencies_dict_path ,"wb") , protocol = 2 )
hdf5_embedd_file = tables.open_file( self.hdf_path , mode='w')
a = tables.Atom.from_dtype( np.dtype('<f8'), dflt=0.0 )
shape = ( 0 ,100 )
earray = hdf5_embedd_file.create_earray( hdf5_embedd_file.root ,'data', a ,shape,"Embeddings")
#print("*"*3)
#print( earray.nrows )
#print( earray.rowsize)
#print( earray.atom )
for emb in embs:
#print("adasdasda")
#print( emb.shape )
emb = emb.reshape( (1 , -1) )
earray.append( emb )
hdf5_embedd_file.close()
self.ready = True
print("HDF5 FILE CREATED AND LOADED")
return
def get_dependencies_dict( self , files_json ):
total_deps = []
for file in files_json:
deps = self.get_deps( file )
total_deps = total_deps + deps
deps_dict = {}
for d in total_deps:
fromid = d["fromid"]
deps_dict[fromid] = []
for d in total_deps:
fromid = d["fromid"]
toid = d["toid"]
deps_dict[fromid].append( toid )
return deps_dict
def load_HDF5( self ):
self.mappings = pickle.load( open( self.mappings_path , "rb") )
self.inverse_mapping = {v: k for k, v in self.mappings.items()}
self.featurizer = pickle.load( open( self.featurizer_path , "rb"))
f = tables.open_file( self.hdf_path , mode = "a")
self.hdf5_file = f
self.data_elastic = self.hdf5_file.root.data
print("#"*10)
print( self.data_elastic.rowsize)
print( self.data_elastic.nrows )
self.data = self.hdf5_file.root.data[:]
self.data = np.array( self.data ).astype( np.float32 )
self.data = self.data.reshape( ( -1 , self.featurizer.final_size ))
def get_embeddings( self , files_json ):
# return the
# id - > embeddings correspondence
all_embeddings = []
index = 0
mapping = {}
#print( files_json )
all_reqs = []
for file in files_json:
#print( file )
requirements = self.get_reqs( file )
all_reqs = all_reqs + requirements
status = ["default"]
types = ["default"]
for req in all_reqs:
if "status" in req :
status.append( req["status"] )
if "requirement_type" in req:
types.append( req["requirement_type"])
# list unique status
status = list( set( status))
types = list(set(types))
print( status )
print( types )
#encoder_status = preprocessing.LabelEncoder()
#encoder_type = preprocessing.LabelEncoder()
#encoder_status = encoder_status.fit( status )
#encoder_type = encoder_type.fit( types )
self.featurizer = featurizer.Featurizer( self.model_fasttext.model , self.model_fasttext.dim )
all_embeddings , mapping = self.featurizer.featurize_reqs( all_reqs )
pickle.dump( self.featurizer , open( self.featurizer_path , "wb" ) , protocol=2 )
return all_embeddings , mapping
def get_reqs( self , file ):
data = ""
with open( file , "r" , encoding = "utf-8") as f:
data = f.read()
data = json.loads( data )
#print(" getting requirements from {} - number of reqs: {}".format( file , len(data["requirements"])) )
return data["requirements"]
def get_deps( self , file ):
data = ""
with open( file , "r" , encoding = "utf-8") as f:
data = f.read()
data = json.loads( data )
#print(" getting requirements from {} - number of reqs: {}".format( file , len(data["requirements"])) )
return data["dependencies"]