forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_harness.py
56 lines (46 loc) · 1.33 KB
/
eval_harness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import fire
import os
import sys
from lm_eval import evaluator, tasks
from llama import EvalHarnessAdaptor
from llama.utils import setup_model_parallel, load
def main(
ckpt_dir: str,
tokenizer_path: str,
task_list: list = None,
num_fewshot: int = 0,
temperature: float = 0.8,
top_p: float = 0.95,
max_seq_len: int = 512,
max_batch_size: int = 32,
write_detailed_eval_info: bool = False,
detailed_eval_info_path: str = None,
):
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
generator = load(
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
)
# apply model to tasks from eval harness
adaptor = EvalHarnessAdaptor(
device='0',
gpt2=generator,
tokenizer=generator.tokenizer,
batch_size=1,
temperature=temperature,
top_p=top_p,
)
if not task_list:
task_list = tasks.ALL_TASKS
task_dict = tasks.get_task_dict(task_list)
results = evaluator.evaluate(
lm=adaptor,
task_dict=task_dict,
num_fewshot=num_fewshot,
write_detailed_eval_info=write_detailed_eval_info,
detailed_eval_info_path=detailed_eval_info_path
)
print(results)
if __name__ == "__main__":
fire.Fire(main)