forked from ethereum-optimism/optimism
-
Notifications
You must be signed in to change notification settings - Fork 2
/
mips.go
569 lines (534 loc) · 14.1 KB
/
mips.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
package mipsevm
import (
"encoding/binary"
"fmt"
"io"
)
const (
sysMmap = 4090
sysBrk = 4045
sysClone = 4120
sysExitGroup = 4246
sysRead = 4003
sysWrite = 4004
sysFcntl = 4055
)
func (m *InstrumentedState) readPreimage(key [32]byte, offset uint32) (dat [32]byte, datLen uint32) {
preimage := m.lastPreimage
if key != m.lastPreimageKey {
m.lastPreimageKey = key
data := m.preimageOracle.GetPreimage(key)
// add the length prefix
preimage = make([]byte, 0, 8+len(data))
preimage = binary.BigEndian.AppendUint64(preimage, uint64(len(data)))
preimage = append(preimage, data...)
m.lastPreimage = preimage
}
m.lastPreimageOffset = offset
datLen = uint32(copy(dat[:], preimage[offset:]))
return
}
func (m *InstrumentedState) trackMemAccess(effAddr uint32) {
if m.memProofEnabled && m.lastMemAccess != effAddr {
if m.lastMemAccess != ^uint32(0) {
panic(fmt.Errorf("unexpected different mem access at %08x, already have access at %08x buffered", effAddr, m.lastMemAccess))
}
m.lastMemAccess = effAddr
m.memProof = m.state.Memory.MerkleProof(effAddr)
}
}
func (m *InstrumentedState) handleSyscall() error {
syscallNum := m.state.Registers[2] // v0
v0 := uint32(0)
v1 := uint32(0)
a0 := m.state.Registers[4]
a1 := m.state.Registers[5]
a2 := m.state.Registers[6]
//fmt.Printf("syscall: %d\n", syscallNum)
switch syscallNum {
case sysMmap:
sz := a1
if sz&PageAddrMask != 0 { // adjust size to align with page size
sz += PageSize - (sz & PageAddrMask)
}
if a0 == 0 {
v0 = m.state.Heap
//fmt.Printf("mmap heap 0x%x size 0x%x\n", v0, sz)
m.state.Heap += sz
} else {
v0 = a0
//fmt.Printf("mmap hint 0x%x size 0x%x\n", v0, sz)
}
case sysBrk:
v0 = 0x40000000
case sysClone: // clone (not supported)
v0 = 1
case sysExitGroup:
m.state.Exited = true
m.state.ExitCode = uint8(a0)
return nil
case sysRead:
// args: a0 = fd, a1 = addr, a2 = count
// returns: v0 = read, v1 = err code
switch a0 {
case fdStdin:
// leave v0 and v1 zero: read nothing, no error
case fdPreimageRead: // pre-image oracle
effAddr := a1 & 0xFFffFFfc
m.trackMemAccess(effAddr)
mem := m.state.Memory.GetMemory(effAddr)
dat, datLen := m.readPreimage(m.state.PreimageKey, m.state.PreimageOffset)
//fmt.Printf("reading pre-image data: addr: %08x, offset: %d, datLen: %d, data: %x, key: %s count: %d\n", a1, m.state.PreimageOffset, datLen, dat[:datLen], m.state.PreimageKey, a2)
alignment := a1 & 3
space := 4 - alignment
if space < datLen {
datLen = space
}
if a2 < datLen {
datLen = a2
}
var outMem [4]byte
binary.BigEndian.PutUint32(outMem[:], mem)
copy(outMem[alignment:], dat[:datLen])
m.state.Memory.SetMemory(effAddr, binary.BigEndian.Uint32(outMem[:]))
m.state.PreimageOffset += datLen
v0 = datLen
//fmt.Printf("read %d pre-image bytes, new offset: %d, eff addr: %08x mem: %08x\n", datLen, m.state.PreimageOffset, effAddr, outMem)
case fdHintRead: // hint response
// don't actually read into memory, just say we read it all, we ignore the result anyway
v0 = a2
default:
v0 = 0xFFffFFff
v1 = MipsEBADF
}
case sysWrite:
// args: a0 = fd, a1 = addr, a2 = count
// returns: v0 = written, v1 = err code
switch a0 {
case fdStdout:
_, _ = io.Copy(m.stdOut, m.state.Memory.ReadMemoryRange(a1, a2))
v0 = a2
case fdStderr:
_, _ = io.Copy(m.stdErr, m.state.Memory.ReadMemoryRange(a1, a2))
v0 = a2
case fdHintWrite:
hintData, _ := io.ReadAll(m.state.Memory.ReadMemoryRange(a1, a2))
m.state.LastHint = append(m.state.LastHint, hintData...)
for len(m.state.LastHint) >= 4 { // process while there is enough data to check if there are any hints
hintLen := binary.BigEndian.Uint32(m.state.LastHint[:4])
if hintLen >= uint32(len(m.state.LastHint[4:])) {
hint := m.state.LastHint[4 : 4+hintLen] // without the length prefix
m.state.LastHint = m.state.LastHint[4+hintLen:]
m.preimageOracle.Hint(hint)
} else {
break // stop processing hints if there is incomplete data buffered
}
}
v0 = a2
case fdPreimageWrite:
effAddr := a1 & 0xFFffFFfc
m.trackMemAccess(effAddr)
mem := m.state.Memory.GetMemory(effAddr)
key := m.state.PreimageKey
alignment := a1 & 3
space := 4 - alignment
if space < a2 {
a2 = space
}
copy(key[:], key[a2:])
var tmp [4]byte
binary.BigEndian.PutUint32(tmp[:], mem)
copy(key[32-a2:], tmp[alignment:])
m.state.PreimageKey = key
m.state.PreimageOffset = 0
//fmt.Printf("updating pre-image key: %s\n", m.state.PreimageKey)
v0 = a2
default:
v0 = 0xFFffFFff
v1 = MipsEBADF
}
case sysFcntl:
// args: a0 = fd, a1 = cmd
if a1 == 3 { // F_GETFL: get file descriptor flags
switch a0 {
case fdStdin, fdPreimageRead, fdHintRead:
v0 = 0 // O_RDONLY
case fdStdout, fdStderr, fdPreimageWrite, fdHintWrite:
v0 = 1 // O_WRONLY
default:
v0 = 0xFFffFFff
v1 = MipsEBADF
}
} else {
v0 = 0xFFffFFff
v1 = MipsEINVAL // cmd not recognized by this kernel
}
}
m.state.Registers[2] = v0
m.state.Registers[7] = v1
m.state.PC = m.state.NextPC
m.state.NextPC = m.state.NextPC + 4
return nil
}
func (m *InstrumentedState) handleBranch(opcode uint32, insn uint32, rtReg uint32, rs uint32) error {
if m.state.NextPC != m.state.PC+4 {
panic("branch in delay slot")
}
shouldBranch := false
if opcode == 4 || opcode == 5 { // beq/bne
rt := m.state.Registers[rtReg]
shouldBranch = (rs == rt && opcode == 4) || (rs != rt && opcode == 5)
} else if opcode == 6 {
shouldBranch = int32(rs) <= 0 // blez
} else if opcode == 7 {
shouldBranch = int32(rs) > 0 // bgtz
} else if opcode == 1 {
// regimm
rtv := (insn >> 16) & 0x1F
if rtv == 0 { // bltz
shouldBranch = int32(rs) < 0
}
if rtv == 1 { // bgez
shouldBranch = int32(rs) >= 0
}
}
prevPC := m.state.PC
m.state.PC = m.state.NextPC // execute the delay slot first
if shouldBranch {
m.state.NextPC = prevPC + 4 + (SE(insn&0xFFFF, 16) << 2) // then continue with the instruction the branch jumps to.
} else {
m.state.NextPC = m.state.NextPC + 4 // branch not taken
}
return nil
}
func (m *InstrumentedState) handleHiLo(fun uint32, rs uint32, rt uint32, storeReg uint32) error {
val := uint32(0)
switch fun {
case 0x10: // mfhi
val = m.state.HI
case 0x11: // mthi
m.state.HI = rs
case 0x12: // mflo
val = m.state.LO
case 0x13: // mtlo
m.state.LO = rs
case 0x18: // mult
acc := uint64(int64(int32(rs)) * int64(int32(rt)))
m.state.HI = uint32(acc >> 32)
m.state.LO = uint32(acc)
case 0x19: // multu
acc := uint64(uint64(rs) * uint64(rt))
m.state.HI = uint32(acc >> 32)
m.state.LO = uint32(acc)
case 0x1a: // div
m.state.HI = uint32(int32(rs) % int32(rt))
m.state.LO = uint32(int32(rs) / int32(rt))
case 0x1b: // divu
m.state.HI = rs % rt
m.state.LO = rs / rt
}
if storeReg != 0 {
m.state.Registers[storeReg] = val
}
m.state.PC = m.state.NextPC
m.state.NextPC = m.state.NextPC + 4
return nil
}
func (m *InstrumentedState) handleJump(linkReg uint32, dest uint32) error {
if m.state.NextPC != m.state.PC+4 {
panic("jump in delay slot")
}
prevPC := m.state.PC
m.state.PC = m.state.NextPC
m.state.NextPC = dest
if linkReg != 0 {
m.state.Registers[linkReg] = prevPC + 8 // set the link-register to the instr after the delay slot instruction.
}
return nil
}
func (m *InstrumentedState) handleRd(storeReg uint32, val uint32, conditional bool) error {
if storeReg >= 32 {
panic("invalid register")
}
if storeReg != 0 && conditional {
m.state.Registers[storeReg] = val
}
m.state.PC = m.state.NextPC
m.state.NextPC = m.state.NextPC + 4
return nil
}
func (m *InstrumentedState) mipsStep() error {
if m.state.Exited {
return nil
}
m.state.Step += 1
// instruction fetch
insn := m.state.Memory.GetMemory(m.state.PC)
opcode := insn >> 26 // 6-bits
// j-type j/jal
if opcode == 2 || opcode == 3 {
linkReg := uint32(0)
if opcode == 3 {
linkReg = 31
}
// Take top 4 bits of the next PC (its 256 MB region), and concatenate with the 26-bit offset
target := (m.state.NextPC & 0xF0000000) | ((insn & 0x03FFFFFF) << 2)
return m.handleJump(linkReg, target)
}
// register fetch
rs := uint32(0) // source register 1 value
rt := uint32(0) // source register 2 / temp value
rtReg := (insn >> 16) & 0x1F
// R-type or I-type (stores rt)
rs = m.state.Registers[(insn>>21)&0x1F]
rdReg := rtReg
if opcode == 0 || opcode == 0x1c {
// R-type (stores rd)
rt = m.state.Registers[rtReg]
rdReg = (insn >> 11) & 0x1F
} else if opcode < 0x20 {
// rt is SignExtImm
// don't sign extend for andi, ori, xori
if opcode == 0xC || opcode == 0xD || opcode == 0xe {
// ZeroExtImm
rt = insn & 0xFFFF
} else {
// SignExtImm
rt = SE(insn&0xFFFF, 16)
}
} else if opcode >= 0x28 || opcode == 0x22 || opcode == 0x26 {
// store rt value with store
rt = m.state.Registers[rtReg]
// store actual rt with lwl and lwr
rdReg = rtReg
}
if (opcode >= 4 && opcode < 8) || opcode == 1 {
return m.handleBranch(opcode, insn, rtReg, rs)
}
storeAddr := uint32(0xFF_FF_FF_FF)
// memory fetch (all I-type)
// we do the load for stores also
mem := uint32(0)
if opcode >= 0x20 {
// M[R[rs]+SignExtImm]
rs += SE(insn&0xFFFF, 16)
addr := rs & 0xFFFFFFFC
m.trackMemAccess(addr)
mem = m.state.Memory.GetMemory(addr)
if opcode >= 0x28 && opcode != 0x30 {
// store
storeAddr = addr
// store opcodes don't write back to a register
rdReg = 0
}
}
// ALU
val := execute(insn, rs, rt, mem)
fun := insn & 0x3f // 6-bits
if opcode == 0 && fun >= 8 && fun < 0x1c {
if fun == 8 || fun == 9 { // jr/jalr
linkReg := uint32(0)
if fun == 9 {
linkReg = rdReg
}
return m.handleJump(linkReg, rs)
}
if fun == 0xa { // movz
return m.handleRd(rdReg, rs, rt == 0)
}
if fun == 0xb { // movn
return m.handleRd(rdReg, rs, rt != 0)
}
// syscall (can read and write)
if fun == 0xC {
return m.handleSyscall()
}
// lo and hi registers
// can write back
if fun >= 0x10 && fun < 0x1c {
return m.handleHiLo(fun, rs, rt, rdReg)
}
}
// stupid sc, write a 1 to rt
if opcode == 0x38 && rtReg != 0 {
m.state.Registers[rtReg] = 1
}
// write memory
if storeAddr != 0xFF_FF_FF_FF {
m.trackMemAccess(storeAddr)
m.state.Memory.SetMemory(storeAddr, val)
}
// write back the value to destination register
return m.handleRd(rdReg, val, true)
}
func execute(insn uint32, rs uint32, rt uint32, mem uint32) uint32 {
opcode := insn >> 26 // 6-bits
if opcode == 0 || (opcode >= 8 && opcode < 0xF) {
fun := insn & 0x3f // 6-bits
// transform ArithLogI to SPECIAL
switch opcode {
case 8:
fun = 0x20 // addi
case 9:
fun = 0x21 // addiu
case 0xA:
fun = 0x2A // slti
case 0xB:
fun = 0x2B // sltiu
case 0xC:
fun = 0x24 // andi
case 0xD:
fun = 0x25 // ori
case 0xE:
fun = 0x26 // xori
}
switch fun {
case 0x00: // sll
return rt << ((insn >> 6) & 0x1F)
case 0x02: // srl
return rt >> ((insn >> 6) & 0x1F)
case 0x03: // sra
shamt := (insn >> 6) & 0x1F
return SE(rt>>shamt, 32-shamt)
case 0x04: // sllv
return rt << (rs & 0x1F)
case 0x06: // srlv
return rt >> (rs & 0x1F)
case 0x07: // srav
return SE(rt>>rs, 32-rs)
// functs in range [0x8, 0x1b] are handled specially by other functions
case 0x08: // jr
return rs
case 0x09: // jalr
return rs
case 0x0a: // movz
return rs
case 0x0b: // movn
return rs
case 0x0c: // syscall
return rs
// 0x0d - break not supported
case 0x0f: // sync
return rs
case 0x10: // mfhi
return rs
case 0x11: // mthi
return rs
case 0x12: // mflo
return rs
case 0x13: // mtlo
return rs
case 0x18: // mult
return rs
case 0x19: // multu
return rs
case 0x1a: // div
return rs
case 0x1b: // divu
return rs
// The rest includes transformed R-type arith imm instructions
case 0x20: // add
return rs + rt
case 0x21: // addu
return rs + rt
case 0x22: // sub
return rs - rt
case 0x23: // subu
return rs - rt
case 0x24: // and
return rs & rt
case 0x25: // or
return rs | rt
case 0x26: // xor
return rs ^ rt
case 0x27: // nor
return ^(rs | rt)
case 0x2a: // slti
if int32(rs) < int32(rt) {
return 1
}
return 0
case 0x2b: // sltiu
if rs < rt {
return 1
}
return 0
default:
panic("invalid instruction")
}
} else {
switch opcode {
// SPECIAL2
case 0x1C:
fun := insn & 0x3f // 6-bits
switch fun {
case 0x2: // mul
return uint32(int32(rs) * int32(rt))
case 0x20, 0x21: // clo
if fun == 0x20 {
rs = ^rs
}
i := uint32(0)
for ; rs&0x80000000 != 0; i++ {
rs <<= 1
}
return i
}
case 0x0F: // lui
return rt << 16
case 0x20: // lb
return SE((mem>>(24-(rs&3)*8))&0xFF, 8)
case 0x21: // lh
return SE((mem>>(16-(rs&2)*8))&0xFFFF, 16)
case 0x22: // lwl
val := mem << ((rs & 3) * 8)
mask := uint32(0xFFFFFFFF) << ((rs & 3) * 8)
return (rt & ^mask) | val
case 0x23: // lw
return mem
case 0x24: // lbu
return (mem >> (24 - (rs&3)*8)) & 0xFF
case 0x25: // lhu
return (mem >> (16 - (rs&2)*8)) & 0xFFFF
case 0x26: // lwr
val := mem >> (24 - (rs&3)*8)
mask := uint32(0xFFFFFFFF) >> (24 - (rs&3)*8)
return (rt & ^mask) | val
case 0x28: // sb
val := (rt & 0xFF) << (24 - (rs&3)*8)
mask := 0xFFFFFFFF ^ uint32(0xFF<<(24-(rs&3)*8))
return (mem & mask) | val
case 0x29: // sh
val := (rt & 0xFFFF) << (16 - (rs&2)*8)
mask := 0xFFFFFFFF ^ uint32(0xFFFF<<(16-(rs&2)*8))
return (mem & mask) | val
case 0x2a: // swl
val := rt >> ((rs & 3) * 8)
mask := uint32(0xFFFFFFFF) >> ((rs & 3) * 8)
return (mem & ^mask) | val
case 0x2b: // sw
return rt
case 0x2e: // swr
val := rt << (24 - (rs&3)*8)
mask := uint32(0xFFFFFFFF) << (24 - (rs&3)*8)
return (mem & ^mask) | val
case 0x30: // ll
return mem
case 0x38: // sc
return rt
default:
panic("invalid instruction")
}
}
panic("invalid instruction")
}
func SE(dat uint32, idx uint32) uint32 {
isSigned := (dat >> (idx - 1)) != 0
signed := ((uint32(1) << (32 - idx)) - 1) << idx
mask := (uint32(1) << idx) - 1
if isSigned {
return dat&mask | signed
} else {
return dat & mask
}
}