Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Model architectures ['MiniCPM3ForCausalLM'] are not supported for now. Supported architectures: #12

Open
1 task done
LeoMax-Xiong opened this issue Sep 12, 2024 · 0 comments
Labels
bug Something isn't working

Comments

@LeoMax-Xiong
Copy link

Your current environment

The output of `python collect_env.py`
Model architectures ['MiniCPM3ForCausalLM'] are not supported for now. Supported architectures:

使用vllm加载minicpm的时候遇到了上面的问题

WARNING 09-12 09:38:02 _custom_ops.py:15] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'")
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.3
Libc version: glibc-2.35

Python version: 3.10.14 (main, May  6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.143-2-velinux1-amd64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 470.161.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 57 bits virtual
Byte Order:                      Little Endian
CPU(s):                          128
On-line CPU(s) list:             0-127
Vendor ID:                       GenuineIntel
Model name:                      Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
CPU family:                      6
Model:                           106
Thread(s) per core:              2
Core(s) per socket:              32
Socket(s):                       2
Stepping:                        6
CPU max MHz:                     3500.0000
CPU min MHz:                     800.0000
BogoMIPS:                        4600.00
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities
Virtualization:                  VT-x
L1d cache:                       3 MiB (64 instances)
L1i cache:                       2 MiB (64 instances)
L2 cache:                        80 MiB (64 instances)
L3 cache:                        108 MiB (2 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-31,64-95
NUMA node1 CPU(s):               32-63,96-127
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.0
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnxruntime-gpu==1.17.0
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.2
[pip3] triton==3.0.0
[pip3] tritonclient==2.48.0
[conda] numpy                     1.26.0                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.4.0                    pypi_0    pypi
[conda] torchvision               0.19.0                   pypi_0    pypi
[conda] transformers              4.44.2                   pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi
[conda] tritonclient              2.48.0                   pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.4
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    mlx5_1  mlx5_2  mlx5_3  mlx5_4  CPU Affinity    NUMA Affinity
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    PXB     NODE    SYS     SYS     0-31,64-95      0
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    PXB     NODE    SYS     SYS     0-31,64-95      0
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    NODE    PXB     SYS     SYS     0-31,64-95      0
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    NODE    PXB     SYS     SYS     0-31,64-95      0
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    SYS     SYS     PXB     NODE    32-63,96-127    1
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    SYS     SYS     PXB     NODE    32-63,96-127    1
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    SYS     SYS     NODE    PXB     32-63,96-127    1
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      SYS     SYS     NODE    PXB     32-63,96-127    1
mlx5_1  PXB     PXB     NODE    NODE    SYS     SYS     SYS     SYS      X      NODE    SYS     SYS
mlx5_2  NODE    NODE    PXB     PXB     SYS     SYS     SYS     SYS     NODE     X      SYS     SYS
mlx5_3  SYS     SYS     SYS     SYS     PXB     PXB     NODE    NODE    SYS     SYS      X      NODE
mlx5_4  SYS     SYS     SYS     SYS     NODE    NODE    PXB     PXB     SYS     SYS     NODE     X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks 

🐛 Describe the bug

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

if __name__ == "__main__":

    model_name = "/training-data/models/OpenBMB/MiniCPM3-4B/"
    prompt = [{"role": "user", "content": "请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。"}]

    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)

    llm = LLM(model=model_name,
        trust_remote_code=True,
        tensor_parallel_size=1
    )
    sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024)

    outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)

    print(outputs[0].outputs[0].text)

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@LeoMax-Xiong LeoMax-Xiong added the bug Something isn't working label Sep 12, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant