-
Notifications
You must be signed in to change notification settings - Fork 2
/
pci.c
561 lines (452 loc) · 13.8 KB
/
pci.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#include "kvm/devices.h"
#include "kvm/pci.h"
#include "kvm/ioport.h"
#include "kvm/irq.h"
#include "kvm/util.h"
#include "kvm/kvm.h"
#include <linux/err.h>
#include <assert.h>
static u32 pci_config_address_bits;
/* This is within our PCI gap - in an unused area.
* Note this is a PCI *bus address*, is used to assign BARs etc.!
* (That's why it can still 32bit even with 64bit guests-- 64bit
* PCI isn't currently supported.)
*/
static u32 mmio_blocks = KVM_PCI_MMIO_AREA;
static u16 io_port_blocks = PCI_IOPORT_START;
u16 pci_get_io_port_block(u32 size)
{
u16 port = ALIGN(io_port_blocks, PCI_IO_SIZE);
io_port_blocks = port + size;
return port;
}
/*
* BARs must be naturally aligned, so enforce this in the allocator.
*/
u32 pci_get_mmio_block(u32 size)
{
u32 block = ALIGN(mmio_blocks, size);
mmio_blocks = block + size;
return block;
}
void *pci_find_cap(struct pci_device_header *hdr, u8 cap_type)
{
u8 pos;
struct pci_cap_hdr *cap;
pci_for_each_cap(pos, cap, hdr) {
if (cap->type == cap_type)
return cap;
}
return NULL;
}
int pci__assign_irq(struct pci_device_header *pci_hdr)
{
/*
* PCI supports only INTA#,B#,C#,D# per device.
*
* A#,B#,C#,D# are allowed for multifunctional devices so stick
* with A# for our single function devices.
*/
pci_hdr->irq_pin = 1;
pci_hdr->irq_line = irq__alloc_line();
if (!pci_hdr->irq_type)
pci_hdr->irq_type = IRQ_TYPE_EDGE_RISING;
return pci_hdr->irq_line;
}
static bool pci_bar_is_implemented(struct pci_device_header *pci_hdr, int bar_num)
{
return pci__bar_size(pci_hdr, bar_num);
}
static bool pci_bar_is_active(struct pci_device_header *pci_hdr, int bar_num)
{
return pci_hdr->bar_active[bar_num];
}
static void *pci_config_address_ptr(u16 port)
{
unsigned long offset;
void *base;
offset = port - PCI_CONFIG_ADDRESS;
base = &pci_config_address_bits;
return base + offset;
}
static bool pci_config_address_out(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
void *p = pci_config_address_ptr(port);
memcpy(p, data, size);
return true;
}
static bool pci_config_address_in(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
void *p = pci_config_address_ptr(port);
memcpy(data, p, size);
return true;
}
static struct ioport_operations pci_config_address_ops = {
.io_in = pci_config_address_in,
.io_out = pci_config_address_out,
};
static bool pci_device_exists(u8 bus_number, u8 device_number, u8 function_number)
{
union pci_config_address pci_config_address;
pci_config_address.w = ioport__read32(&pci_config_address_bits);
if (pci_config_address.bus_number != bus_number)
return false;
if (pci_config_address.function_number != function_number)
return false;
return !IS_ERR_OR_NULL(device__find_dev(DEVICE_BUS_PCI, device_number));
}
static bool pci_config_data_out(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
union pci_config_address pci_config_address;
if (size > 4)
size = 4;
pci_config_address.w = ioport__read32(&pci_config_address_bits);
/*
* If someone accesses PCI configuration space offsets that are not
* aligned to 4 bytes, it uses ioports to signify that.
*/
pci_config_address.reg_offset = port - PCI_CONFIG_DATA;
pci__config_wr(vcpu->kvm, pci_config_address, data, size);
return true;
}
static bool pci_config_data_in(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
union pci_config_address pci_config_address;
if (size > 4)
size = 4;
pci_config_address.w = ioport__read32(&pci_config_address_bits);
/*
* If someone accesses PCI configuration space offsets that are not
* aligned to 4 bytes, it uses ioports to signify that.
*/
pci_config_address.reg_offset = port - PCI_CONFIG_DATA;
pci__config_rd(vcpu->kvm, pci_config_address, data, size);
return true;
}
static struct ioport_operations pci_config_data_ops = {
.io_in = pci_config_data_in,
.io_out = pci_config_data_out,
};
static int pci_activate_bar(struct kvm *kvm, struct pci_device_header *pci_hdr,
int bar_num)
{
int r = 0;
if (pci_bar_is_active(pci_hdr, bar_num))
goto out;
r = pci_hdr->bar_activate_fn(kvm, pci_hdr, bar_num, pci_hdr->data);
if (r < 0) {
pci_dev_warn(pci_hdr, "Error activating emulation for BAR %d",
bar_num);
goto out;
}
pci_hdr->bar_active[bar_num] = true;
out:
return r;
}
static int pci_deactivate_bar(struct kvm *kvm, struct pci_device_header *pci_hdr,
int bar_num)
{
int r = 0;
if (!pci_bar_is_active(pci_hdr, bar_num))
goto out;
r = pci_hdr->bar_deactivate_fn(kvm, pci_hdr, bar_num, pci_hdr->data);
if (r < 0) {
pci_dev_warn(pci_hdr, "Error deactivating emulation for BAR %d",
bar_num);
goto out;
}
pci_hdr->bar_active[bar_num] = false;
out:
return r;
}
static void pci_config_command_wr(struct kvm *kvm,
struct pci_device_header *pci_hdr,
u16 new_command)
{
int i;
bool toggle_io, toggle_mem;
toggle_io = (pci_hdr->command ^ new_command) & PCI_COMMAND_IO;
toggle_mem = (pci_hdr->command ^ new_command) & PCI_COMMAND_MEMORY;
for (i = 0; i < 6; i++) {
if (!pci_bar_is_implemented(pci_hdr, i))
continue;
if (toggle_io && pci__bar_is_io(pci_hdr, i)) {
if (__pci__io_space_enabled(new_command))
pci_activate_bar(kvm, pci_hdr, i);
else
pci_deactivate_bar(kvm, pci_hdr, i);
}
if (toggle_mem && pci__bar_is_memory(pci_hdr, i)) {
if (__pci__memory_space_enabled(new_command))
pci_activate_bar(kvm, pci_hdr, i);
else
pci_deactivate_bar(kvm, pci_hdr, i);
}
}
pci_hdr->command = new_command;
}
static int pci_toggle_bar_regions(bool activate, struct kvm *kvm, u32 start, u32 size)
{
struct device_header *dev_hdr;
struct pci_device_header *tmp_hdr;
u32 tmp_start, tmp_size;
int i, r;
dev_hdr = device__first_dev(DEVICE_BUS_PCI);
while (dev_hdr) {
tmp_hdr = dev_hdr->data;
for (i = 0; i < 6; i++) {
if (!pci_bar_is_implemented(tmp_hdr, i))
continue;
tmp_start = pci__bar_address(tmp_hdr, i);
tmp_size = pci__bar_size(tmp_hdr, i);
if (tmp_start + tmp_size <= start ||
tmp_start >= start + size)
continue;
if (activate)
r = pci_activate_bar(kvm, tmp_hdr, i);
else
r = pci_deactivate_bar(kvm, tmp_hdr, i);
if (r < 0)
return r;
}
dev_hdr = device__next_dev(dev_hdr);
}
return 0;
}
static inline int pci_activate_bar_regions(struct kvm *kvm, u32 start, u32 size)
{
return pci_toggle_bar_regions(true, kvm, start, size);
}
static inline int pci_deactivate_bar_regions(struct kvm *kvm, u32 start, u32 size)
{
return pci_toggle_bar_regions(false, kvm, start, size);
}
static void pci_config_bar_wr(struct kvm *kvm,
struct pci_device_header *pci_hdr, int bar_num,
u32 value)
{
u32 old_addr, new_addr, bar_size;
u32 mask;
int r;
if (pci__bar_is_io(pci_hdr, bar_num))
mask = (u32)PCI_BASE_ADDRESS_IO_MASK;
else
mask = (u32)PCI_BASE_ADDRESS_MEM_MASK;
/*
* If the kernel masks the BAR, it will expect to find the size of the
* BAR there next time it reads from it. After the kernel reads the
* size, it will write the address back.
*
* According to the PCI local bus specification REV 3.0: The number of
* upper bits that a device actually implements depends on how much of
* the address space the device will respond to. A device that wants a 1
* MB memory address space (using a 32-bit base address register) would
* build the top 12 bits of the address register, hardwiring the other
* bits to 0.
*
* Furthermore, software can determine how much address space the device
* requires by writing a value of all 1's to the register and then
* reading the value back. The device will return 0's in all don't-care
* address bits, effectively specifying the address space required.
*
* Software computes the size of the address space with the formula
* S = ~B + 1, where S is the memory size and B is the value read from
* the BAR. This means that the BAR value that kvmtool should return is
* B = ~(S - 1).
*/
if (value == 0xffffffff) {
value = ~(pci__bar_size(pci_hdr, bar_num) - 1);
/* Preserve the special bits. */
value = (value & mask) | (pci_hdr->bar[bar_num] & ~mask);
pci_hdr->bar[bar_num] = value;
return;
}
value = (value & mask) | (pci_hdr->bar[bar_num] & ~mask);
/* Don't toggle emulation when region type access is disbled. */
if (pci__bar_is_io(pci_hdr, bar_num) &&
!pci__io_space_enabled(pci_hdr)) {
pci_hdr->bar[bar_num] = value;
return;
}
if (pci__bar_is_memory(pci_hdr, bar_num) &&
!pci__memory_space_enabled(pci_hdr)) {
pci_hdr->bar[bar_num] = value;
return;
}
/*
* BAR reassignment can be done while device access is enabled and
* memory regions for different devices can overlap as long as no access
* is made to the overlapping memory regions. To implement BAR
* reasignment, we deactivate emulation for the region described by the
* BAR value that the guest is changing, we disable emulation for the
* regions that overlap with the new one (by scanning through all PCI
* devices), we enable emulation for the new BAR value and finally we
* enable emulation for all device regions that were overlapping with
* the old value.
*/
old_addr = pci__bar_address(pci_hdr, bar_num);
new_addr = __pci__bar_address(value);
bar_size = pci__bar_size(pci_hdr, bar_num);
r = pci_deactivate_bar(kvm, pci_hdr, bar_num);
if (r < 0)
return;
r = pci_deactivate_bar_regions(kvm, new_addr, bar_size);
if (r < 0) {
/*
* We cannot update the BAR because of an overlapping region
* that failed to deactivate emulation, so keep the old BAR
* value and re-activate emulation for it.
*/
pci_activate_bar(kvm, pci_hdr, bar_num);
return;
}
pci_hdr->bar[bar_num] = value;
r = pci_activate_bar(kvm, pci_hdr, bar_num);
if (r < 0) {
/*
* New region cannot be emulated, re-enable the regions that
* were overlapping.
*/
pci_activate_bar_regions(kvm, new_addr, bar_size);
return;
}
pci_activate_bar_regions(kvm, old_addr, bar_size);
}
void pci__config_wr(struct kvm *kvm, union pci_config_address addr, void *data, int size)
{
void *base;
u8 bar, offset;
struct pci_device_header *pci_hdr;
u8 dev_num = addr.device_number;
u32 value = 0;
if (!pci_device_exists(addr.bus_number, dev_num, 0))
return;
offset = addr.w & PCI_DEV_CFG_MASK;
base = pci_hdr = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;
if (pci_hdr->cfg_ops.write)
pci_hdr->cfg_ops.write(kvm, pci_hdr, offset, data, size);
/*
* legacy hack: ignore writes to uninitialized regions (e.g. ROM BAR).
* Not very nice but has been working so far.
*/
if (*(u32 *)(base + offset) == 0)
return;
/*
* ignore writes to the PCI STATUS register
*/
if (offset == PCI_STATUS)
return;
if (offset == PCI_COMMAND) {
memcpy(&value, data, size);
pci_config_command_wr(kvm, pci_hdr, (u16)value);
return;
}
bar = (offset - PCI_BAR_OFFSET(0)) / sizeof(u32);
if (bar < 6) {
memcpy(&value, data, size);
pci_config_bar_wr(kvm, pci_hdr, bar, value);
return;
}
/*
* limit writes to the MSIX Message Control register to writable bits
*/
if (offset == (offsetof(struct pci_device_header, msix) + offsetof(struct msix_cap, ctrl))) {
memcpy(&value, base + offset, size);
value = (*(u16 *)data & (3 << 14)) | (value & ~(3 << 14));
memcpy(base + offset, &value, size);
return;
}
memcpy(base + offset, data, size);
}
void pci__config_rd(struct kvm *kvm, union pci_config_address addr, void *data, int size)
{
u8 offset;
struct pci_device_header *pci_hdr;
u8 dev_num = addr.device_number;
if (pci_device_exists(addr.bus_number, dev_num, 0)) {
pci_hdr = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;
offset = addr.w & PCI_DEV_CFG_MASK;
if (pci_hdr->cfg_ops.read)
pci_hdr->cfg_ops.read(kvm, pci_hdr, offset, data, size);
memcpy(data, (void *)pci_hdr + offset, size);
} else {
memset(data, 0xff, size);
}
}
static void pci_config_mmio_access(struct kvm_cpu *vcpu, u64 addr, u8 *data,
u32 len, u8 is_write, void *kvm)
{
union pci_config_address cfg_addr;
addr -= KVM_PCI_CFG_AREA;
cfg_addr.w = (u32)addr;
cfg_addr.enable_bit = 1;
if (len > 4)
len = 4;
if (is_write)
pci__config_wr(kvm, cfg_addr, data, len);
else
pci__config_rd(kvm, cfg_addr, data, len);
}
struct pci_device_header *pci__find_dev(u8 dev_num)
{
struct device_header *hdr = device__find_dev(DEVICE_BUS_PCI, dev_num);
if (IS_ERR_OR_NULL(hdr))
return NULL;
return hdr->data;
}
int pci__register_bar_regions(struct kvm *kvm, struct pci_device_header *pci_hdr,
bar_activate_fn_t bar_activate_fn,
bar_deactivate_fn_t bar_deactivate_fn, void *data)
{
int i, r;
assert(bar_activate_fn && bar_deactivate_fn);
pci_hdr->bar_activate_fn = bar_activate_fn;
pci_hdr->bar_deactivate_fn = bar_deactivate_fn;
pci_hdr->data = data;
for (i = 0; i < 6; i++) {
if (!pci_bar_is_implemented(pci_hdr, i))
continue;
assert(!pci_bar_is_active(pci_hdr, i));
if (pci__bar_is_io(pci_hdr, i) &&
pci__io_space_enabled(pci_hdr)) {
r = pci_activate_bar(kvm, pci_hdr, i);
if (r < 0)
return r;
}
if (pci__bar_is_memory(pci_hdr, i) &&
pci__memory_space_enabled(pci_hdr)) {
r = pci_activate_bar(kvm, pci_hdr, i);
if (r < 0)
return r;
}
}
return 0;
}
int pci__init(struct kvm *kvm)
{
int r;
r = ioport__register(kvm, PCI_CONFIG_DATA + 0, &pci_config_data_ops, 4, NULL);
if (r < 0)
return r;
r = ioport__register(kvm, PCI_CONFIG_ADDRESS + 0, &pci_config_address_ops, 4, NULL);
if (r < 0)
goto err_unregister_data;
r = kvm__register_mmio(kvm, KVM_PCI_CFG_AREA, PCI_CFG_SIZE, false,
pci_config_mmio_access, kvm);
if (r < 0)
goto err_unregister_addr;
return 0;
err_unregister_addr:
ioport__unregister(kvm, PCI_CONFIG_ADDRESS);
err_unregister_data:
ioport__unregister(kvm, PCI_CONFIG_DATA);
return r;
}
dev_base_init(pci__init);
int pci__exit(struct kvm *kvm)
{
ioport__unregister(kvm, PCI_CONFIG_DATA);
ioport__unregister(kvm, PCI_CONFIG_ADDRESS);
return 0;
}
dev_base_exit(pci__exit);