-
Notifications
You must be signed in to change notification settings - Fork 128
/
loss.py
184 lines (151 loc) · 7.04 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import torch.nn.functional as F
class MonodepthLoss(nn.modules.Module):
def __init__(self, n=4, SSIM_w=0.85, disp_gradient_w=1.0, lr_w=1.0):
super(MonodepthLoss, self).__init__()
self.SSIM_w = SSIM_w
self.disp_gradient_w = disp_gradient_w
self.lr_w = lr_w
self.n = n
def scale_pyramid(self, img, num_scales):
scaled_imgs = [img]
s = img.size()
h = s[2]
w = s[3]
for i in range(num_scales - 1):
ratio = 2 ** (i + 1)
nh = h // ratio
nw = w // ratio
scaled_imgs.append(nn.functional.interpolate(img,
size=[nh, nw], mode='bilinear',
align_corners=True))
return scaled_imgs
def gradient_x(self, img):
# Pad input to keep output size consistent
img = F.pad(img, (0, 1, 0, 0), mode="replicate")
gx = img[:, :, :, :-1] - img[:, :, :, 1:] # NCHW
return gx
def gradient_y(self, img):
# Pad input to keep output size consistent
img = F.pad(img, (0, 0, 0, 1), mode="replicate")
gy = img[:, :, :-1, :] - img[:, :, 1:, :] # NCHW
return gy
def apply_disparity(self, img, disp):
batch_size, _, height, width = img.size()
# Original coordinates of pixels
x_base = torch.linspace(0, 1, width).repeat(batch_size,
height, 1).type_as(img)
y_base = torch.linspace(0, 1, height).repeat(batch_size,
width, 1).transpose(1, 2).type_as(img)
# Apply shift in X direction
x_shifts = disp[:, 0, :, :] # Disparity is passed in NCHW format with 1 channel
flow_field = torch.stack((x_base + x_shifts, y_base), dim=3)
# In grid_sample coordinates are assumed to be between -1 and 1
output = F.grid_sample(img, 2*flow_field - 1, mode='bilinear',
padding_mode='zeros')
return output
def generate_image_left(self, img, disp):
return self.apply_disparity(img, -disp)
def generate_image_right(self, img, disp):
return self.apply_disparity(img, disp)
def SSIM(self, x, y):
C1 = 0.01 ** 2
C2 = 0.03 ** 2
mu_x = nn.AvgPool2d(3, 1)(x)
mu_y = nn.AvgPool2d(3, 1)(y)
mu_x_mu_y = mu_x * mu_y
mu_x_sq = mu_x.pow(2)
mu_y_sq = mu_y.pow(2)
sigma_x = nn.AvgPool2d(3, 1)(x * x) - mu_x_sq
sigma_y = nn.AvgPool2d(3, 1)(y * y) - mu_y_sq
sigma_xy = nn.AvgPool2d(3, 1)(x * y) - mu_x_mu_y
SSIM_n = (2 * mu_x_mu_y + C1) * (2 * sigma_xy + C2)
SSIM_d = (mu_x_sq + mu_y_sq + C1) * (sigma_x + sigma_y + C2)
SSIM = SSIM_n / SSIM_d
return torch.clamp((1 - SSIM) / 2, 0, 1)
def disp_smoothness(self, disp, pyramid):
disp_gradients_x = [self.gradient_x(d) for d in disp]
disp_gradients_y = [self.gradient_y(d) for d in disp]
image_gradients_x = [self.gradient_x(img) for img in pyramid]
image_gradients_y = [self.gradient_y(img) for img in pyramid]
weights_x = [torch.exp(-torch.mean(torch.abs(g), 1,
keepdim=True)) for g in image_gradients_x]
weights_y = [torch.exp(-torch.mean(torch.abs(g), 1,
keepdim=True)) for g in image_gradients_y]
smoothness_x = [disp_gradients_x[i] * weights_x[i]
for i in range(self.n)]
smoothness_y = [disp_gradients_y[i] * weights_y[i]
for i in range(self.n)]
return [torch.abs(smoothness_x[i]) + torch.abs(smoothness_y[i])
for i in range(self.n)]
def forward(self, input, target):
"""
Args:
input [disp1, disp2, disp3, disp4]
target [left, right]
Return:
(float): The loss
"""
left, right = target
left_pyramid = self.scale_pyramid(left, self.n)
right_pyramid = self.scale_pyramid(right, self.n)
# Prepare disparities
disp_left_est = [d[:, 0, :, :].unsqueeze(1) for d in input]
disp_right_est = [d[:, 1, :, :].unsqueeze(1) for d in input]
self.disp_left_est = disp_left_est
self.disp_right_est = disp_right_est
# Generate images
left_est = [self.generate_image_left(right_pyramid[i],
disp_left_est[i]) for i in range(self.n)]
right_est = [self.generate_image_right(left_pyramid[i],
disp_right_est[i]) for i in range(self.n)]
self.left_est = left_est
self.right_est = right_est
# L-R Consistency
right_left_disp = [self.generate_image_left(disp_right_est[i],
disp_left_est[i]) for i in range(self.n)]
left_right_disp = [self.generate_image_right(disp_left_est[i],
disp_right_est[i]) for i in range(self.n)]
# Disparities smoothness
disp_left_smoothness = self.disp_smoothness(disp_left_est,
left_pyramid)
disp_right_smoothness = self.disp_smoothness(disp_right_est,
right_pyramid)
# L1
l1_left = [torch.mean(torch.abs(left_est[i] - left_pyramid[i]))
for i in range(self.n)]
l1_right = [torch.mean(torch.abs(right_est[i]
- right_pyramid[i])) for i in range(self.n)]
# SSIM
ssim_left = [torch.mean(self.SSIM(left_est[i],
left_pyramid[i])) for i in range(self.n)]
ssim_right = [torch.mean(self.SSIM(right_est[i],
right_pyramid[i])) for i in range(self.n)]
image_loss_left = [self.SSIM_w * ssim_left[i]
+ (1 - self.SSIM_w) * l1_left[i]
for i in range(self.n)]
image_loss_right = [self.SSIM_w * ssim_right[i]
+ (1 - self.SSIM_w) * l1_right[i]
for i in range(self.n)]
image_loss = sum(image_loss_left + image_loss_right)
# L-R Consistency
lr_left_loss = [torch.mean(torch.abs(right_left_disp[i]
- disp_left_est[i])) for i in range(self.n)]
lr_right_loss = [torch.mean(torch.abs(left_right_disp[i]
- disp_right_est[i])) for i in range(self.n)]
lr_loss = sum(lr_left_loss + lr_right_loss)
# Disparities smoothness
disp_left_loss = [torch.mean(torch.abs(
disp_left_smoothness[i])) / 2 ** i
for i in range(self.n)]
disp_right_loss = [torch.mean(torch.abs(
disp_right_smoothness[i])) / 2 ** i
for i in range(self.n)]
disp_gradient_loss = sum(disp_left_loss + disp_right_loss)
loss = image_loss + self.disp_gradient_w * disp_gradient_loss\
+ self.lr_w * lr_loss
self.image_loss = image_loss
self.disp_gradient_loss = disp_gradient_loss
self.lr_loss = lr_loss
return loss