-
Notifications
You must be signed in to change notification settings - Fork 105
/
data.py
341 lines (282 loc) · 14.5 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import torch.utils.data
import PIL
from PIL import Image
from torch.nn import functional as F
from custom_transforms import *
def get_geometric_blur_patch(tensor_small, midpoint, patchsize, coeff):
midpoint = midpoint // coeff
hs = patchsize // 2
hn = max(0, midpoint[0] - hs)
hx = min(midpoint[0] + hs, tensor_small.size()[1] - 1)
xn = max(0, midpoint[1] - hs)
xx = min(midpoint[1] + hs, tensor_small.size()[2] - 1)
p = tensor_small[:, hn:hx, xn:xx]
if p.size()[1] != patchsize or p.size()[2] != patchsize:
r = torch.zeros((3, patchsize, patchsize))
r[:, 0:p.size()[1], 0:p.size()[2]] = p
p = r
return p
################################
# Dataset full-images
################################
class DatasetFullImages(torch.utils.data.Dataset):
def __init__(self, dir_pre, dir_post, dir_mask, device, dir_x1, dir_x2, dir_x3, dir_x4, dir_x5, dir_x6, dir_x7, dir_x8, dir_x9):
super(DatasetFullImages, self).__init__()
self.dir_pre = dir_pre
self.fnames = sorted(os.listdir(self.dir_pre))
self.dir_post = dir_post
self.dir_mask = dir_mask
self.transform = build_transform()
self.mask_transform = build_mask_transform()
#self.temporal_frames = 3
self.dir_pre_x1 = dir_x1
self.dir_pre_x2 = dir_x2
self.dir_pre_x3 = dir_x3
self.dir_pre_x4 = dir_x4
self.dir_pre_x5 = dir_x5
self.dir_pre_x6 = dir_x6
self.dir_pre_x7 = dir_x7
self.dir_pre_x8 = dir_x8
self.dir_pre_x9 = dir_x9
#print('DatasetFullImages: number of training examples %d' % len(self.fnames))
#def getitem_inner(self, item):
def __getitem__(self, item):
# get an image that is NOT stylized and its stylized counterpart
fileName = self.fnames[item]
pre = PIL.Image.open(os.path.join(self.dir_pre, fileName))
pre_tensor = self.transform(pre)
if self.dir_pre_x1 is not None and self.dir_pre_x1 != "":
pre_x1 = PIL.Image.open(os.path.join(self.dir_pre_x1, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x1)), dim=0)
if self.dir_pre_x2 is not None and self.dir_pre_x2 != "":
pre_x2 = PIL.Image.open(os.path.join(self.dir_pre_x2, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x2)), dim=0)
if self.dir_pre_x3 is not None and self.dir_pre_x3 != "":
pre_x3 = PIL.Image.open(os.path.join(self.dir_pre_x3, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x3)), dim=0)
if self.dir_pre_x4 is not None and self.dir_pre_x4 != "":
pre_x4 = PIL.Image.open(os.path.join(self.dir_pre_x4, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x4)), dim=0)
if self.dir_pre_x5 is not None and self.dir_pre_x5 != "":
pre_x5 = PIL.Image.open(os.path.join(self.dir_pre_x5, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x5)), dim=0)
if self.dir_pre_x6 is not None and self.dir_pre_x6 != "":
pre_x6 = PIL.Image.open(os.path.join(self.dir_pre_x6, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x6)), dim=0)
if self.dir_pre_x7 is not None and self.dir_pre_x7 != "":
pre_x7 = PIL.Image.open(os.path.join(self.dir_pre_x7, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x7)), dim=0)
if self.dir_pre_x8 is not None and self.dir_pre_x8 != "":
pre_x8 = PIL.Image.open(os.path.join(self.dir_pre_x8, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x8)), dim=0)
if self.dir_pre_x9 is not None and self.dir_pre_x9 != "":
pre_x9 = PIL.Image.open(os.path.join(self.dir_pre_x9, fileName))
pre_tensor = torch.cat((pre_tensor, self.transform(pre_x9)), dim=0)
result = {'pre': pre_tensor,
'file_name': self.fnames[item]}
if not self.dir_post.endswith("ignore"):
post = PIL.Image.open(os.path.join(self.dir_post, fileName))
post_tensor = self.transform(post)
result['post'] = post_tensor
# get a random already stylized image
already_path = os.path.join(self.dir_post, self.fnames[np.random.randint(0, len(self.fnames))])
im_s = PIL.Image.open(already_path)
im_s_tensor = self.transform(im_s)
result['already'] = im_s_tensor
if not self.dir_mask.endswith("ignore"):
mask = PIL.Image.open(os.path.join(self.dir_mask, fileName))
mask = mask.point(lambda p: p > 128 and 255) # !!! thresholding the mask fixes possible float and int conversion errors
mask_tensor = self.mask_transform(mask).int().float()
result['mask'] = mask_tensor
return result
def XXX__getitem__(self, item):
result = {'pre': None,
'file_name': self.fnames[item]}
for i in range(item - self.temporal_frames, item + self.temporal_frames + 1):
is_curr_item = True if i == item else False
i = max(0, i)
i = min(len(self.fnames)-1, i)
result_i = self.getitem_inner(i)
if result['pre'] is None:
result['pre'] = result_i['pre']
else:
result['pre'] = torch.cat((result['pre'], result_i['pre']), dim=0)
if is_curr_item and "post" in result_i:
result['post'] = result_i['post']
if is_curr_item and "already" in result_i:
result['already'] = result_i['already']
if is_curr_item and "mask" in result_i:
result['mask'] = result_i['mask']
return result
def __len__(self):
return int(len(self.fnames))
#####
# Default "patch" dataset, used for training
#####
class DatasetPatches_M(torch.utils.data.Dataset):
def __init__(self, dir_pre, dir_post, dir_mask, patch_size, device, dir_x1, dir_x2, dir_x3, dir_x4, dir_x5, dir_x6, dir_x7, dir_x8, dir_x9):
super(DatasetPatches_M, self).__init__()
self.dir_pre = dir_pre
self.dir_post = dir_post
self.dir_mask = dir_mask
self.patch_size = patch_size
self.geom_blur_coeff = 0.0
self.device = "cpu"
self.real_device = device
#self.temporal_frames = 3
self.paths_pre = sorted(os.listdir(dir_pre))
self.paths_post = sorted(os.listdir(dir_post))
self.paths_masks = sorted(os.listdir(dir_mask))
self.transform = build_transform()
self.mask_transform = build_mask_transform()
self.images_pre = []
self.images_pre_geom = []
self.images_post = []
images_mask = []
# additional guides
self.images_x1 = []
self.images_x2 = []
self.images_x3 = []
self.images_x4 = []
self.images_x5 = []
self.images_x6 = []
self.images_x7 = []
self.images_x8 = []
self.images_x9 = []
i = 0
for p in self.paths_pre:
if p == "Thumbs.db":
continue
p_png = os.path.splitext(p)[0] + '.png'
preim = PIL.Image.open(os.path.join(self.dir_pre, p))
postim = PIL.Image.open(os.path.join(self.dir_post, p_png))
maskim = PIL.Image.open(os.path.join(self.dir_mask, p_png))
maskim = maskim.point(lambda p: p > 128 and 255) # !!! thresholding the mask fixes possible float and int conversion errors
pre_tensor = self.transform(preim)
if self.geom_blur_coeff != 0.0:
self.images_pre_geom.append(torch.nn.functional.interpolate(pre_tensor.unsqueeze(0), scale_factor=1.0 / self.geom_blur_coeff).squeeze(0))
self.images_pre.append(pre_tensor) # .to(self.device))
if dir_x1 is not None and dir_x1 != "":
x1_im = PIL.Image.open(os.path.join(dir_x1, p))
self.images_x1.append(self.transform(x1_im))
if dir_x2 is not None and dir_x2 != "":
x2_im = PIL.Image.open(os.path.join(dir_x2, p))
self.images_x2.append(self.transform(x2_im))
if dir_x3 is not None and dir_x3 != "":
x3_im = PIL.Image.open(os.path.join(dir_x3, p))
self.images_x3.append(self.transform(x3_im))
if dir_x4 is not None and dir_x4 != "":
x4_im = PIL.Image.open(os.path.join(dir_x4, p))
self.images_x4.append(self.transform(x4_im))
if dir_x5 is not None and dir_x5 != "":
x5_im = PIL.Image.open(os.path.join(dir_x5, p))
self.images_x5.append(self.transform(x5_im))
if dir_x6 is not None and dir_x6 != "":
x6_im = PIL.Image.open(os.path.join(dir_x6, p))
self.images_x6.append(self.transform(x6_im))
if dir_x7 is not None and dir_x7 != "":
x7_im = PIL.Image.open(os.path.join(dir_x7, p))
self.images_x7.append(self.transform(x7_im))
if dir_x8 is not None and dir_x8 != "":
x8_im = PIL.Image.open(os.path.join(dir_x8, p))
self.images_x8.append(self.transform(x8_im))
if dir_x9 is not None and dir_x9 != "":
x9_im = PIL.Image.open(os.path.join(dir_x9, p))
self.images_x9.append(self.transform(x9_im))
self.images_post.append(self.transform(postim)) # .to(self.device))
images_mask.append(self.mask_transform(maskim).int().float().to(device))
i += 1
self.valid_indices = []
self.valid_indices_left = []
i = 0
erosion_weights = torch.ones((1, 1, 7, 7)).to(device)
for m in images_mask:
m[m < 0.4] = 0
m = F.conv2d(m.unsqueeze(0), erosion_weights, stride=1, padding=3)
m[m < erosion_weights.numel()] = 0
m /= erosion_weights.numel()
self.valid_indices.append(m.squeeze().nonzero(as_tuple=False).to(self.device))
self.valid_indices_left.append(list(range(0, len(self.valid_indices[i]))))
i += 1
def cut_patch(self, im, midpoint, size):
hs = size // 2
hn = max(0, midpoint[0] - hs)
hx = min(midpoint[0] + hs, im.size()[1] - 1)
xn = max(0, midpoint[1] - hs)
xx = min(midpoint[1] + hs, im.size()[2] - 1)
p = im[:, hn:hx, xn:xx]
if p.size()[1] != size or p.size()[2] != size:
r = torch.zeros((3, size, size))
r[:, 0:p.size()[1], 0:p.size()[2]] = p
p = r
return p
# CURRENTLY NOT IN USE
def patch_diff(self, im, patch1_mid, patch2_mid, size):
patch1 = self.cut_patch(im, patch1_mid, size)
patch2 = self.cut_patch(im, patch2_mid, size)
patch = patch1 - patch2
patch = patch ** 2
sum = patch.sum()
return sum
def cut_patches(self, im_index, midpoint, midpoint_r, size):
patch_pre = self.cut_patch(self.images_pre[im_index], midpoint, size)
if self.geom_blur_coeff != 0.0:
geom_blur_patch = get_geometric_blur_patch(self.images_pre_geom[im_index], midpoint, size, self.geom_blur_coeff)
patch_pre = torch.cat((patch_pre, geom_blur_patch), dim=0)
if len(self.images_x1) > 0:
patch_x1 = self.cut_patch(self.images_x1[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x1), dim=0)
if len(self.images_x2) > 0:
patch_x2 = self.cut_patch(self.images_x2[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x2), dim=0)
if len(self.images_x3) > 0:
patch_x3 = self.cut_patch(self.images_x3[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x3), dim=0)
if len(self.images_x4) > 0:
patch_x4 = self.cut_patch(self.images_x4[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x4), dim=0)
if len(self.images_x5) > 0:
patch_x5 = self.cut_patch(self.images_x5[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x5), dim=0)
if len(self.images_x6) > 0:
patch_x6 = self.cut_patch(self.images_x6[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x6), dim=0)
if len(self.images_x7) > 0:
patch_x7 = self.cut_patch(self.images_x7[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x7), dim=0)
if len(self.images_x8) > 0:
patch_x8 = self.cut_patch(self.images_x8[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x8), dim=0)
if len(self.images_x9) > 0:
patch_x9 = self.cut_patch(self.images_x9[im_index], midpoint, size)
patch_pre = torch.cat((patch_pre, patch_x9), dim=0)
patch_post = self.cut_patch(self.images_post[im_index], midpoint, size)
patch_random = self.cut_patch(self.images_post[im_index], midpoint_r, size)
return patch_pre, patch_post, patch_random
def __getitem__(self, item):
im_index = item % len(self.images_pre)
midpoint_id = np.random.randint(0, len(self.valid_indices_left[im_index]))
midpoint_r_id = np.random.randint(0, len(self.valid_indices[im_index]))
midpoint = self.valid_indices[im_index][self.valid_indices_left[im_index][midpoint_id], :].squeeze()
midpoint_r = self.valid_indices[im_index][midpoint_r_id, :].squeeze()
del self.valid_indices_left[im_index][midpoint_id]
if len(self.valid_indices_left[im_index]) < 1:
self.valid_indices_left[im_index] = list(range(0, len(self.valid_indices[im_index])))
result = {}
for i in range(0, 1): #range(im_index - self.temporal_frames, im_index + self.temporal_frames + 1):
is_curr_item = True # if i == im_index else False
#i = max(0, i)
#i = min(len(self.images_pre)-1, i)
patch_pre, patch_post, patch_random = self.cut_patches(im_index, midpoint, midpoint_r, self.patch_size)
if "pre" not in result:
result['pre'] = patch_pre
else:
result['pre'] = torch.cat((result['pre'], patch_pre), dim=0)
if is_curr_item:
result['post'] = patch_post
if is_curr_item:
result['already'] = patch_random
return result
def __len__(self):
return sum([(n.numel() // 2) for n in self.valid_indices]) * 5 # dont need to restart