-
Notifications
You must be signed in to change notification settings - Fork 0
/
ESF2.tex
1935 lines (1534 loc) · 107 KB
/
ESF2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{gensymb}
\usepackage{amstext}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{textcomp}
\usepackage{float}
\usepackage{varioref}
\usepackage{fancyref}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{comment}
\usepackage{hyperref}
\hypersetup{
colorlinks=true, % false: boxed links; true: colored links
linkcolor=red, % color of internal links (change box color with linkbordercolor)
citecolor=green, % color of links to bibliography
filecolor=magenta, % color of file links
urlcolor=blue % color of external links
}
\usepackage{epstopdf}
\usepackage[margin=1in, paperwidth=8.5in, paperheight=11in]{geometry}
\usepackage{listings}
\usepackage{xcolor}
\usepackage{pdfpages}
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage{lscape}
\usepackage{rotating}
\usepackage{epstopdf}
\usepackage{fancyhdr}
\usepackage{amssymb}
\usepackage{adjustbox}
\usepackage{lastpage}
% \usepackage{showframe}
\graphicspath{{images/}}
\title{Formula Hybrid: ESF Part 2}
\author{Lisa Hachmann}
\date{February 2016}
\begin{document}
\pagestyle{fancy}
\renewcommand{\headrulewidth}{0pt}
\lhead{}
\chead{}
\rhead{}
\lfoot{Page \thepage \hspace{1pt} of \pageref{LastPage}}
\cfoot{} % comment for default page numbering
\rfoot{\includegraphics[width=2cm]{revo.png}}
\newpage
\begin{figure}[H]
\centering
\includegraphics[width = 0.7 \textwidth]{FHlogo}
% \label{fig:my_label}
\end{figure}
\vfill
\title{16 Formula Hybrid Electrical System Form (ESF)}
\section*{INTRODUCTION}
The goal of the ESF is to ensure that vehicles are as safe as possible, and that they comply with the Formula-Hybrid completion rules. The ESF is divided seven main sections:
\begin{enumerate}
\item Overview
\item Cables, Fusing \& Grounding \item Isolation \& Insulation
\item Electric Tractive System
\item Accumulator System
\item Safety Controls and Indicators
\item GLV System
\end{enumerate}
The Cables and Fusing, and Insulation and Isolation sections are at the beginning of the ESF as these are the areas where teams most often have trouble in complying with FH rules.\\
A clear, concise ESF will help you to build a better car. It will also help you to pass tech testing as most common tech problems can be addressed before the car reaches the track.\\
\textcolor{red}{\textbf{IMPORTANT INSTRUCTIONS AND REQUIREMENTS}}
\begin{enumerate}
\item Every part of this ESF must be filled with content. If a section is not relevant to your vehicle, mark it as “N/A” and describe briefly why not.
\item Leave the written instructions in place and add your responses below them.
\item All figures and tables must be included. An ESF with incomplete tables or figures will be rejected.
\item The maximum length of a complete ESF is 100 pages.
\item Note that many fields ask for information that was submitted in your ESF-1. This information must be reentered – in some cases will be different than what was entered in ESF-1, which is OK.
\item When completed, this document must be converted to a pdf and submitted to: http://formula-hybrid.com/uploads/
\end{enumerate}
Please submit any questions, corrections and suggestions for improvement to: http://www.formula-hybrid.org/level2/support
\newpage
\textbf{REVIEW PROCESS}
Once submitted, your ESF will be reviewed by at least two FH reviewers. One will be the designated primary reviewer for your team.\\
Feedback on your ESF occurs through the Formula Hybrid upload system. You will receive emails via this system from your reviewers offering guidance and feedback. You will also submit revised versions of your ESF in this system. When you submit a revised ESF, please indicate the REVISION DATE AND LETTER (starting with Letter A) and which sections have been updated in the following table:
\begin{table}[H]
\centering
\begin{tabular}{|l|l|}
\hline
REVISION DATE & May 1, 2014 \\ \hline
REVISION (A, B, C, etc...) & B \\ \hline
\multicolumn{1}{|c|}{Section} & \multicolumn{1}{c|}{Revised (Yes/No)} \\ \hline
1- Overview & No \\ \hline
2- Cables and Fusing & Yes \\ \hline
3- Insulation and Isolation & No \\ \hline
4- Electric Tractive System & No \\ \hline
5- Accumulator System & Yes \\ \hline
6- GLV System & No \\ \hline
7- Safety Controls and Indicators & No \\ \hline
8- Appendices/Datasheets & No \\ \hline
\end{tabular}
\end{table}
\begin{titlepage}
\centering
\vfill
\includegraphics[width=10cm]{revo.png}
{\bfseries\Large
REVO Electric Racing\\
\vskip2cm
ESF Part 2\\
}
\vfill
\begin{figure}[H]
\includegraphics[width=0.4\textwidth]{carRender.png}
\centering
\end{figure}
\vfill
\begin{figure}[H]
\includegraphics[width=0.4\textwidth]{teamphoto.jpg}
\centering
\end{figure}
\vfill
\begin{table}[H]
\centering
\label{teaminfo}
\begin{tabular}{lr}
University Name: & Olin College of Engineering \\ \hline
Team Name: & REVO Electric Racing \\ \hline
Car Number: & E212 \\ \hline
\end{tabular}
\end{table}
\textbf{\underline{Main Team Contact for ESF related questions:}}
\begin{table}[H]
\centering
\label{overallresponsible}
\begin{tabular}{lr}
Name: & Lisa J. Hachmann \\ \hline
email: & [email protected] \\ \hline
\end{tabular}
\end{table}
\vfill
\end{titlepage}
\tableofcontents
\listoffigures
\setlength{\parindent}{0pt}
\newpage
\listoftables
\addcontentsline{toc}{section}{List of Tables}
\newpage
\section*{List of Abbreviations}
\addcontentsline{toc}{section}{List of Abbreviations}
\begin{itemize}
\item AIR- Accumulator Isolation Relay
\item AMS- Accumulator Management System
\item GLV- Grounded Low-Voltage
\item IMD- Insulation Monitoring Device
\item SMD- Segment Maintenance Disconnect
\item MSD- Manual Service Disconnect
\item TS- Tractive System
\item TSEL- Tractive System Energized Light
\item TSMP- Tractive System Measurement Point
\item TSV- Tractive System Voltage
\item TSVP- Tractive System Voltage Present
\item CONN- Main accumulator connector
\item NDA- Non-Disclosure Agreement
\end{itemize}
%Add more as needed
\newpage
\section{Vehicle Overview}
Person primarily responsible for this section:
\begin{table}[H]
\centering
\label{responsible1}
\begin{tabular}{lr}
Name: & Lisa Hachmann \\ \hline
e-mail: & [email protected] \\ \hline
\end{tabular}
\end{table}
Check the appropriate boxes:\\
\par{Vehicle is:}
\begin{itemize}
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}$\checkmark$} \hspace{0.2cm} New (built on an entirely new frame)
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} New, but built on a pre-existing frame (FSAE, FS, FH electric-only, etc.)
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} Updated from a previous year vehicle
\end{itemize}
\par{Architecture:}
\begin{itemize}
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} Hybrid
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} Hybrid in Progress (HIP)
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}$\checkmark$} \hspace{0.2cm} Electric Only
\end{itemize}
\par{Drive:}
\begin{itemize}
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} Front Wheel
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}$\checkmark$} \hspace{0.2cm} Rear Wheel
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} All-wheel
\end{itemize}
\par{Regenerative Braking:}
\begin{itemize}
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} Front Wheels
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}$\checkmark$} \hspace{0.2cm} Rear Wheels
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} All-wheels
\item \makebox[0pt][l]{$\square$}\raisebox{.15ex}{\hspace{0.1em}} \hspace{0.2cm} None
\end{itemize}
\newpage
\textit{Provide a brief, concise description of the vehicles main electrical systems including tractive system, accumulator, hybrid type (series or parallel) and method of mechanical coupling to wheels. Describe any innovative or unusual aspects of the design.}\\
We have designed an all-electric car powered by 2 Zero Motorcycles Z-Force brushless DC motors coupled to Sevcon Gen 4 Size 4 motor controllers. The motors independently drive the rear wheels through two single speed chain reductions. Independent drive allows us to implement a virtual differential drive mode and eventually torque vectoring, which is a project for the future and will not be implemented on the vehicle this year. The accumulator comprises 12 Nissan Leaf modules in series, which in total provides 96.4V and 65Ah of capacity. The car communicates across a CAN-Bus system, simplifying wiring substantially.\\
\textit{Include the following figures:}
\begin{sidewaysfigure}[p]
\includegraphics[width=\textheight]{TSBLOCK}
\caption{Tractive System Block Diagram}
\label{tractiveblock}
\end{sidewaysfigure}
\begin{itemize}
\item \textit{Figure 1 – an electrical system block diagram showing all major parts associated with the tractive-system. (Not detailed wiring).}
\item \textit{Figure 2 – Drawings or photographs showing the vehicle from the front, top, and side}
\item \textit{Figure 3 – A wiring diagram superimposed on a top view of the vehicle showing the locations of all major TS components and the routing of TS wiring.}
\item \textit{Figure 4 -- Include a complete TSV wiring schematic per FH Rule S4.4.1 showing connections between all TS components. This should include accumulator cells, AIRs, SMDs, motor controller, motor, pre-charge and discharge circuits, AMD, IMD, charging port and any other TS connections. \underline{\textcolor{red}{NOTE: Figure 4 is the most important diagram in the ESF}}}
\end{itemize}
Please note that the figure numbers in our document do not correspond to the specified numbering above (Figure 2 comprises 3 figures: top, front, side view of the vehicle).
\newpage
\newpage
\newpage
\begin{figure}[H]
\centering
\includegraphics[width = 0.7 \textwidth]{cartopdown}
\caption{Full Vehicle, Top View}
\label{cartopdown}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.7 \textwidth]{carsideview}
\caption{Full Vehicle, Side View}
\label{carsideview}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.7 \textwidth]{carfront}
\caption{Full Vehicle, Front View}
\label{carfront}
\end{figure}
\begin{sidewaysfigure}[p]
\includegraphics[width=\textheight]{tractiveblock}
\caption{Tractive system schematic. For wiring of the AMS, please see figure \ref{amsschem}. Please note that the precharge has additional circuitry (for feedback timing), which is clarified in figure \ref{prechargeschem} for simplicity }
\label{tractiveschem}
\end{sidewaysfigure}
\newpage
\newpage
%should i include ams or just ams relays?
\textit{Fill in the following table:}
\begin{table}[H]
\centering
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|l|l|}
\hline
Item & Data \\ \hline
Nominal Tractive System Voltage (TSV) & 90 VDC \\ \hline
Max. TSV (typically this is during charging) & 98.4 VDC \\ \hline
Control System voltage (GLV) & 13.5 VDC \\ \hline
Total Accumulator capacity (Wh) & 4680 Wh \\ \hline
Accumulator Type & Li-ion \\ \hline
Number of electric motors, total & 2 \\ \hline
Are wheel motors used? & No \\ \hline
\end{tabular}
\end{adjustbox}
\caption{General Electrical System Parameters}
\label{generalsystemtable}
\end{table}
\section{Cables, Fusing \& Grounding}
Person primarily responsible for this section:
\begin{table}[H]
\centering
\label{responsible2}
\begin{tabular}{lr}
Name: & Lisa J. Hachmann \\ \hline
e-mail: & [email protected] \\ \hline
\end{tabular}
\end{table}
\subsection{Fusing and Overcurrent Protection}
\textit{List TS and GLV fuse (or circuit breaker) data, and where used}
%Fuse table- List TS and GLV fuse (or circuit breaker) data, and where used
\begin{table}[H]
\centering
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|l|l|l|l|l|l|}
\hline
Mfg. & \begin{tabular}[c]{@{}l@{}}Fuse Part\\ Number\end{tabular} & \begin{tabular}[c]{@{}l@{}}Cont. \\ Rating (A)\end{tabular} & \begin{tabular}[c]{@{}l@{}}DC Voltage\\ Rating\end{tabular} & \begin{tabular}[c]{@{}l@{}}DC Interrupt\\ Rating (A)\end{tabular} & Where Used \\ \hline
Bel Fuse & CIQ 3 & 3A & 63V & 63V DC@50A & \begin{tabular}[c]{@{}l@{}}Each input to AMS\\ voltage reading\end{tabular} \\ \hline
Ferraz Shawmut & A15QS7-2 & 7A & 150V & 100,000 & \begin{tabular}[c]{@{}l@{}}Keyswitch pin \\ activating precharge\end{tabular} \\ \hline
Bussman & LPJ-175SP & 175A & 300V & 20,000 & \begin{tabular}[c]{@{}l@{}}TS+ before \\ motor controllers\end{tabular} \\ \hline
Littelfuse & F3169CT-ND & 1A & 125V & 300A@125VDC & \begin{tabular}[c]{@{}l@{}}TS+ and TS- low current \\ components, lights' DC-DC \\ converter, \\ GLV DC-DC converter\end{tabular} \\\hline
Littelfuse & MINI2BP & 2A & 32 V & 1000A @ 32 VD & \begin{tabular}[c]{@{}l@{}}12V power, Shutdown circuit. \end{tabular} \\ \hline
Littelfuse & MINI5BP & 5A & 32 V & 1000A @ 32 VD & \begin{tabular}[c]{@{}l@{}} GLV system \end{tabular} \\ \hline
Bel Fuse & 0ZCK0050FF2E & 0.5A & 6V & PTC Resettable & 5V CAN circuit \\ \hline
Bussmann/Eaton & BK/SC-20 & 20A & 170 V & 10kA Vdc & Charging input to battery \\ \hline
\end{tabular}
\end{adjustbox}
\caption{Fuse Table}
\label{fusetable}
\end{table}
There is a 1A fuse on both the TS+ and TS- lines (20 AWG), protecting the GLV system by being in front of the DC-DC converter and protecting the TS sensing lines for the IMD, TSEL, accumulator indicator and TSMPs. For its connection in the tractive system, please see figure \ref{tractiveblock} and for its connection in the glv system, please see figure \ref{glvfusing}.
\subsection{Component Fusing}
\textit{List major components (e.g., motor controller, dc-dc converter) and data sheet max fuse rating. Ensure that the rating of the fuse used is less than the maximum value for the component.}
%Component Fuse Ratings table
\begin{table}[H]
\centering
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|l|l|l|l|l|}
\hline
Component & Fuse Part Number & Max Fuse Rating & \begin{tabular}[c]{@{}l@{}}Installed \\ Fuse Rating\end{tabular} & Notes \\ \hline
Motor Controllers & LPJ175SP & 190 A (for 2AWG) & 175A & \begin{tabular}[c]{@{}l@{}}Fused before motor\\ controllers in parallel\end{tabular} \\ \hline
AMS inputs (x28) & CIQ 3 & 4A (for traces) & 3A & \begin{tabular}[c]{@{}l@{}}Each input fused\\ separately\end{tabular} \\ \hline
GLV System & MIN5BP & 7A (for 22AWG) & 5A & \\ \hline
GLV 12V & MIN2BP & 7A (for 22AWG, traces) & 2A & \\ \hline
Shutdown circuit & MIN2BP & 7A (for 22AWG, traces) & 2A & \\ \hline
5V CAN circuit & 0ZCK0050FF2E & 0.5A & 0.5A & \\ \hline
\begin{tabular}[c]{@{}l@{}}Lights DC-DC converter, \\ TSMPs, GLV DC-DC converter,\\ and IMD\end{tabular} & F3169CT-ND & 7A (for 22 AWG) & 0.5A & \begin{tabular}[c]{@{}l@{}}Protects all TS \\ low current\\ components\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}Keyswitch input to Motor \\ Controller\end{tabular} & A15QS7-2 & \begin{tabular}[c]{@{}l@{}}7A (for motor\\ controller LV input)\end{tabular} & 7A & \\ \hline
Battery Input (charging) & BK/SC-20 & For battery cells, charging & NDA \\ \hline
\end{tabular}
\end{adjustbox}
\caption{Component Fuse Ratings}
\label{componenttable}
\end{table}
\subsection{System Wire Tables}
\textit{List wires and cables used in the Tractive System and the GLV system - wires protected by a fuse of 1 A or less may be omitted.
Cable capacity is the value from FH Rules Appendix E (Wire Current Capacity). A revised version of Appendix E that includes metric wire sizes is available at the FH web site. Show available fault current and how calculated. Available fault current can be calculated from FaultCurrent = Vsource / (Rsource + Rwiring)}
%System Wire Table
\begin{table}[H]
\centering
\begin{adjustbox}{angle=90,width=1in}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline
Mfg & \begin{tabular}[c]{@{}l@{}}Part\\ No\end{tabular} & \begin{tabular}[c]{@{}l@{}}Size \\ AWG\end{tabular} & \begin{tabular}[c]{@{}l@{}}Insulation\\ Type\end{tabular} & \begin{tabular}[c]{@{}l@{}}Voltage\\ Rating\end{tabular} & \begin{tabular}[c]{@{}l@{}}Temp. \\ Rating\end{tabular} & \begin{tabular}[c]{@{}l@{}}Cable\\ Capacity \\ (per FH)\end{tabular} & \begin{tabular}[c]{@{}l@{}}Fuse\\ Part \#\end{tabular} & \begin{tabular}[c]{@{}l@{}}Fuse \\ Cont. A\end{tabular} & \begin{tabular}[c]{@{}l@{}}Fuse Interrupting\\ Rating A\end{tabular} & \begin{tabular}[c]{@{}l@{}}Available\\ Fault Current\end{tabular} & \begin{tabular}[c]{@{}l@{}}Where used \& \\ how fault current\\ is calculated\end{tabular} \\ \hline
Prestolite & \begin{tabular}[c]{@{}l@{}}Not listed\\ UL style 3870\end{tabular} & 2 AWG (33.3 mm\textasciicircum 2) & \begin{tabular}[c]{@{}l@{}}EPDM \\ single layer\end{tabular} & 8 kVAC & 125 C & 190 A & LPJ-175SP & 175 & 20,000 & 41152 A & \begin{tabular}[c]{@{}l@{}}Motor Controllers\\ to Motors x 3, see description\end{tabular} \\ \hline
Delphi & Not listed & 35 mm\textasciicircum 2 & Dual insulated & 600 V & 150 C & $\>190$ A & \begin{tabular}[c]{@{}l@{}}Series\\ with above fuse\end{tabular} & \begin{tabular}[c]{@{}l@{}}See \\ above\end{tabular} & See above & 41152 A & \begin{tabular}[c]{@{}l@{}}Accumulator to\\ HVD, Accumulator\\ to Motor controllers x2\end{tabular} \\ \hline
Wiechang & Unknown & See below & XLPE & 600V & 150 C & Motor leads & Series with above fuse & See above & See above & 41152 A & See description \\ \hline
CnC Tech & CN117R-50-ND & 20 AWG & Silicone Rubber & 300V & 150 C & 10 A & MIN2BP & 5A & 25 $A^{2}s$ & 25A & See description \\ \hline
B\&K Precision & CT2879-4-10 & 20 AWG & Poly-Vinyl Chloride (PVC) & 1000V & 80 C & 7 A & MIN2BP & 5A & 25 A2s & 25A & See description \\ \hline
Valcon & 206504 fti & 22 AWG & SR-PVC & 300V & 80 C & 7A & See above & See above & See above & See description & \multicolumn{1}{c|}{\begin{tabular}[c]{@{}c@{}}Dashboard wiring,\\ between PCBs (GLV) \\ and CAN lines\end{tabular}} \\ \hline
NTE Electronics & WH22-07-25 & 22 AWG & PVC & 300V & 105C & 7A & See above & See above & See above & See description & Accumulator low-current wiring and GLV wiring \\ \hline
AWC Allied Wire & AWL style 1569 & 22 AWG & PVC & 600V & 105C & 7A & See above & See above & See above & See description & Accumulator low-current wiring and GLV wiring\\ \hline
CnC Tech & AWL style 11047 & 22 AWG & PVC & 600V & 105C & 7A& See above & See above & See above & See description & Accumulator low-current wiring and GLV wiring\\ \hline
Hosa Tech & Speaker Cable 12 AWG 2 OFC & 12 AWG & PVC & 125 V & 105C & 40A & 504-BK/SC-20 & 20A & 10kA $A^{2}s$ & 17 A & See description\\ \hline
\end{tabular}
\end{adjustbox}
\caption{System wire table}
\label{systemwiretable}
\end{table}
The motor leads are permanently attached by the manufacturer, and are OEM. The width of the motor lead with insulation (other measurements cannot be taken) is 0.45 inch, so we believe it to be of at least 2 AWG.
The fault current for the motor to motor controller wiring (Prestolite), is calculated as follows (using FH-supplied formula):
\begin{align}
\text{Fault Current} &= \dfrac{V_{source}}{R_{source} + R_{wiring}}\\
\text{Fault Current} &= \dfrac{100}{0.00149 \ohm + 0.00094 \ohm}\\
\text{Fault Current} &= 41152 \text{A}
\end{align}
The fault current for the accumulator to motor controller wiring (Delphi), is calculated as follows (using FH-supplied formula):
\begin{align}
\text{Fault Current} &= \dfrac{V_{source}}{R_{source} + R_{wiring}}\\
\text{Fault Current} &= \dfrac{100}{0.00149 \ohm + 0.00145 \ohm}\\
\text{Fault Current} &= 34013 \text{A}
\end{align}
The fault current for the GLV system is restricted by the DC-DC converter supplying power to the GLV system. The DC-DC converter can only output 25A, and will restrict any fault current to 25A.
The fault current for the charging system is restricted by the charger for the batteries. The charger can only output 17A, and will restrict any fault current to 17A.
\subsection{Grounding System}
\textit{Describe how you keep the resistances between accessible components below the required levels as defined in FH Rules EV4.3. If wire is used for ground bonding, state the AWG or mm2 of the wire}
The chassis is used as GLV ground. This ground is established at the side panel mount holding many of the shutdown components and the TSMP's. All mechanical systems in the vehicle, such as the accumulator, drivers seat, and pedal box, achieve low resistance to ground because they are either welded directly to the chassis, or fastened using uncoated, conductive metal fasteners. Electrical systems that are satellite to the main panel mount that need to establish a connection to ground for sense purposes are grounded to the chassis using ring terminals. Ring terminals can be included in the bolt stack up of mechanical systems to ensure a secure connection to ground that is positively retained with a lock nut. All wires used for ground bonding will be 16 AWG. During charging, there will be a green 16 AWG wire connecting the GLV system to earth ground.
\subsection{Conductive Panel Grounding}
\textit{If carbon fiber or coated conductive panels are used in your design, describe the fabrication methods used to ensure point to point resistances that comply with EV4.3.2. Describe results of measurements made per EV4.3.3.}
We are not using CFRP or conductive materials in our vehicle.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%SECTION 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Isolation and Insulation}
Person primarily responsible for this section:
\begin{table}[H]
\centering
\label{responsible3}
\begin{tabular}{lr}
Name: & Lisa Hachmann \\ \hline
e-mail: & [email protected] \\ \hline
\end{tabular}
\end{table}
\subsection{Separation of Tractive System and Grounded Low Voltage System}
\textit{Describe how the TS and GLV systems are physically separated (EV4.1). Add CAD drawings or photographs of how TS and GLV are segregated in key areas of the electrical system.}
%figures of ts and glv separation
\textit{List all electrical circuit boards designed by team that contain TS and GLV voltage in the following table.}
%table of PCB spacings
% The second table should include any component, in your AMS or otherwise, that is connected
% to both the Tractive and the GLV system. You should add in the "Notes" column the general
% location of these parts. The spacing table allows us to reference the boards that have TS
% and GLV in close proximity, and the parts table allows us to reference the data sheets of
% the parts that span the gap the spacing creates.
\begin{table}[H]
\centering
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|l|l|l|l|l|}
\hline
Device/PCB & TS Voltage Present & \begin{tabular}[c]{@{}l@{}}Minimum \\ Spacing mm\end{tabular} & \begin{tabular}[c]{@{}l@{}}Thru Air or\\ Over surface\end{tabular} & Notes \\ \hline
\begin{tabular}[c]{@{}l@{}}AIR Control Board \\ (Precharge, Discharge,\\ Lights, AMS relays, etc)\end{tabular} & 100 V & 6.4mm & Over Surface & \\ \hline
\begin{tabular}[c]{@{}l@{}}Accumulator Management\\ System (x4)\end{tabular} & 22.5V & 6.4mm & Over surface & \begin{tabular}[c]{@{}l@{}}1 AMS per segment, \\ each segment nominally\\ 22.5V\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}Side Panel CAN node \\ (Ready to drive sound, TSMP)\end{tabular} & 100V & 6.4mm & Over Surface & \\ \hline
Motor Controller Isolation & 100 V & 6.4mm & Over surface & \\ \hline
\end{tabular}
\end{adjustbox}
\caption{PCB Spacings}
\label{pcbspacingstable}
\end{table}
\textit{Add a figure (board layout drawing) for each team-designed PCB showing that spacings comply with EV4.1.8.}
%figures of each row
% \begin{figure}[H]
% \centering
% \includegraphics[width = 0.6 \textwidth]{bms_separation}
% \caption{Capture of the separation on each AMS board between TS and GLV power (6.57 mm)}
% \label{amsseparation}
% \end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.6 \textwidth]{bmsspace1}
\caption{Capture of the separation on each AMS board between TS and GLV power on the top copper (262 mil)}
\label{amsseparation1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.6 \textwidth]{bmsspace2}
\caption{Capture of the separation on each AMS board between TS and GLV power on the top copper (264 mil)}
\label{amsseparation2}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.45 \textwidth]{bmsspace6}
\caption{Capture of the separation on each AMS board between TS and GLV power on the top copper (300 mil)}
\label{amsseparation6}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.45 \textwidth]{bmsspace3}
\caption{Capture of the separation on each AMS board between TS and GLV power on the bottom copper(291 mil)}
\label{amsseparation3}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.45 \textwidth]{bmsspace4}
\caption{Capture of the separation on each AMS board between TS and GLV power on the bottom copper (349 mil)}
\label{amsseparation4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.45 \textwidth]{bmsspace5}
\caption{Capture of the separation on each AMS board between TS and GLV power on the bottom copper (253 mil)}
\label{amsseparation5}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.5 \textwidth]{aircntrlCAD}
\caption{AIR control board, with the bright blue line denoting the separation between the TS and GLV voltage. The smallest separation is 8.5 mm (over surface)}
\label{AIRcontrolspacing}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.7 \textwidth]{sidepanelPCB}
\caption{Side Panel board, with the bright blue line denoting the separation between the TS and GLV voltage. The smallest separation is 1/4 in (over surface)}
\label{sidepanelspacing}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.6 \textwidth]{MCCspacing}
\caption{Motor Controller Isolation board, which has a bright blue line denoting the separation between the TS and GLV voltage. The spacing is 6.731 mm. consistently (over surface)}
\label{MCCspacing}
\end{figure}
\textit{List all purchased components with both TS and GLV connections (at min motor controller and AMS).}
\begin{table}[H]
\centering
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|l|l|l|l|}
\hline
Component & Isolation method & \begin{tabular}[c]{@{}l@{}}Link to Document\\ Describing Isolation\end{tabular} & Notes \\ \hline
Precharge relay & Galvanic (relay) & \href{http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=6-1773450-9_LEV100&DocType=DS&DocLang=English}{Click here} & \\ \hline
Discharge relay & Galvanic (relay) & \href{http://cotorelay.com/wp-content/uploads/2014/09/5500\_series\_reed\_relay\_datasheet.pdf}{Click Here} & \\ \hline
GLV DC-DC converter & Not listed & \href{http://www.evdrives.com/product\_p/vr-sevcon-7213.htm}{Click Here} & \\ \hline
Lights DC-DC converter & \begin{tabular}[c]{@{}l@{}}Not listed: Isolation\\ test at 5000V\end{tabular} & \href{http://www.mouser.com/ds/2/281/mdc\_ruw15-217876.pdf}{Click Here} & \\ \hline
Ready to drive relay & Galvanic (relay) & \href{http://pdf1.alldatasheet.com/datasheet-pdf/view/451822/MACOM/SDT-S-124DMR000.html}{Click Here} & \\ \hline
AMS relay x4 & Galvanic (relay) & \href{http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv\&DocNm=OJ\_OJE\_series\_relay\_data\_sheet\_E\&DocType=DS\&DocLang=English}{Click Here} & \\ \hline
Photorelay mosfet & Galvanic (Photorelay) & \href{http://toshiba.semicon-storage.com/info/docget.jsp?did=17083\&prodName=TLP592A}{Click Here} & \\ \hline
Isolated CAN Tranceiver & Galvanic & \href{http://www.ti.com/lit/ds/symlink/iso1050.pdf}{Click Here} & \\ \hline
BSPD Relay & Galvanic (relay) & \href{http://www.mouser.com/ProductDetail/TE-Connectivity/OJ-SH-105HM000/?qs=%2fha2pyFaduihBgI7ARjI70jHf%2f4%2fFPQxhir8DUrpU%252bkAVAYrW5DJOg%3d%3d}{Click Here} & \\ \hline
\end{tabular}
\end{adjustbox}
\caption{Purchased Components - Isolation Data}
\label{purchased-isolationtable}
\end{table}
%Weirdly unnamed table, about component and isolation
\subsection{Isolation and Insulation}
\textit{Provide a list of containers that have TS and GLV wiring in them. If a barrier is used rather than spacing, identify barrier material used (reference Table 7- Insulating Materials).}
\begin{table}[ht]
\centering
% \begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|l|l|l|l|l|l|}
\hline
Container Name & \begin{tabular}[c]{@{}l@{}}Segregation \\ by Spacing\\ (Y or N)\end{tabular} & \begin{tabular}[c]{@{}l@{}}How is spacing\\ maintained?\end{tabular} & \begin{tabular}[c]{@{}l@{}}Actual Measured \\ Spacing (mm)\end{tabular} & \begin{tabular}[c]{@{}l@{}}Alt Barrier \\ Material P/N\end{tabular} & Notes \\ \hline
Accumulator Container & Y & \begin{tabular}[c]{@{}l@{}}Kevlar reinforced \\ nylon cable clips \\ and cable ties\end{tabular} & \begin{tabular}[c]{@{}l@{}}Accumulator is \\ in assembly so \\ measured distance\\ is unavailable.\end{tabular} & \begin{tabular}[c]{@{}l@{}}Mcmaster 8667K55\\ (Garolite)\end{tabular} & \begin{tabular}[c]{@{}l@{}}Garolite is\\ also used\\ as the barrier\\ between \\ segments, TS\\ fuse and AIRs\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}Motor controller\\ housing\end{tabular} & Y & \begin{tabular}[c]{@{}l@{}}Kevlar reinforced\\ nylon cable clips \\ and cable ties\end{tabular} & \begin{tabular}[c]{@{}l@{}}Housing is in\\ assembly so\\ measured distance\\ is unavailable\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}[c]{@{}c@{}}Nomex wire tubing \\ McMaster 8798K32 \end{tabular}} & \multicolumn{1}{c|}{} \\ \hline
\end{tabular}
\caption{List of Containers with TS and GLV wiring}
\label{isolationtable}
% \end{adjustbox}
\end{table}
\textit{List all insulating barrier materials used to meet the requirements of EV1.3 or EV4.1.5}
\begin{table}[ht]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
Insulating Material / Part Number & UL Recognized ? & Rated Temperature \degree C & Thickness mm & Notes \\ \hline
N/A & N/A & N/A & N/A & N/A \\ \hline
\end{tabular}
\caption{Insulating Materials}
\label{insulatingmaterials}
\end{table}
\subsection{Conduit}
\textit{List different types of conduit used in the design. Specify location and if manufacturer’s standard fittings are used. Note Virtual Accumulator Housing FH Rules EV3.3.1 requires METALLIC type LFMC.}
\textit{Describe how the conduit is anchored if standard fittings are not used.}
%table of Conduit Data
\begin{table}[H]
\centering
\begin{tabular}{|l|l|l|l|l|l|}
\hline
\begin{tabular}[c]{@{}l@{}}Conduit \\ Type\end{tabular} & MFR & Part Number & Diameter & \begin{tabular}[c]{@{}l@{}}Standard\\ fittings\end{tabular} & Location/Use \\ \hline
PVC Nylon PVC & N/A (McMaster) & 8465K23 & \begin{tabular}[c]{@{}l@{}}3/4" trade\\ size\end{tabular} & Y & \begin{tabular}[c]{@{}l@{}}Motor to Motor\\ controller (x2)\end{tabular} \\ \hline
\end{tabular}
\caption{Conduit Data}
\label{conduittable}
\end{table}
\textit{Is all conduit contained within the vehicle Surface Envelope per EV4.2.1? (Y or N).}
Yes, all conduit is contained within the vehicle surface envelope per EV4.2.1.
\textit{Does all conduit comply with EV4.5.10? (Y or N).}
Yes all conduit complies with EV4.5.10.
\subsection{Shielded Dual-Insulated Cable}
\textit{If shielded, dual-insulated cable per EV4.5.8 used in the vehicle, provide specifications and where used:}
%table of Shielded Dual Insulated Cable Data
\begin{table}[H]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
MFR & \begin{tabular}[c]{@{}l@{}}Part \\ Number\end{tabular} & Cross section & \begin{tabular}[c]{@{}l@{}}Shielded \\ ground at\end{tabular} & Location/Use \\ \hline
Delphi & Unknown & 35 mm\textasciicircum 2 & Y & \begin{tabular}[c]{@{}l@{}}Accumulator to HVD, \\ Accumulator to Motor \\ controllers (x2)\end{tabular} \\ \hline
\end{tabular}
\caption{Shielded Dual Insulated Cable Data}
\label{shieldedwiretable}
\end{table}
The Delphi shielded cable is being provided by General Motors, and we are still trying to get the part number at this time. It is rated for 125 \degree C and 600V.
\subsection{Firewall(s)}
\textit{Describe the concept, layer structure and the materials used for the firewalls. Describe how all firewall requirements in FH Rules T4.5.1 are satisfied. Show how the low resistance connection to chassis ground is achieved.}
\textbf{Description/Materials}
The firewall is constructed of two layers. The layer facing the tractive system is 1.5 mm aluminum sheet metal, with a chamfered edge. The second layer facing the cockpit is 1/8 in. Flame-Retardant Multipurpose Garolite (G-10/FR4). The assembly is fastened together using sheet metal rivets. The chassis has welded sheet metal tabs that fasten to the firewall with bolts and positively retained nuts. Because the firewall is fastened to the chassis using conductive fasteners, it is connected to GLVS ground.\\
All high voltage and high temperature systems are contained in the rear of the vehicle, so only one firewall will be used. There are GLV systems in the dashboard and pedal box. A small grommeted hole will be made in the firewall for GLV wiring only.
%this is not the latest version of the firewall (exploded).
\begin{figure}[H]
\centering
\includegraphics[width = 0.6 \textwidth]{ExplodedView}
\caption{Exploded view of the firewall}
\label{explodedfirewall}
\end{figure}
\textbf{Position in Car}
\textit{Provide CAD-rendering or photographs showing the location of the firewall(s)}
The firewall is located between the driver and the accumulator, to protect the driver from the TS. Figure \ref{firewallposition} shows the position with the driver seat. The top corner of the extruded part of the firewall is chamfered in order to protect the driver and will also be covered with padding.
\begin{figure}[H]
\centering
\includegraphics[width = 0.3 \textwidth]{Firewallincar}
\caption{Photograph of the installed firewall's position in the car}
\label{firewallposition}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%SECTION 4%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Electric Tractive System}
Person primarily responsible for this section:
\begin{table}[H]
\centering
\label{responsible4}
\begin{tabular}{lr}
Name: & Lisa J. Hachmann \\ \hline
e-mail: & [email protected] \\ \hline
\end{tabular}
\end{table}
\subsection{Motor(s)} \label{mcurrent}
\textit{Describe the motor(s) used and reason for this particular choice. Add additional tables if multiple motor types are used}
The motors used are Zero Motorcycles Z-Force 75-5 brushless DC motors, which are manufactured and used by Zero Motorcycles in their production units. We have an established sponsorship with Zero Motorcycles, which is the primary reason for our motor selection. The motors are paired to two Sevcon Gen 4 Size 4 motor controllers, which are also used in Zero's production units.
\begin{table}[H]
\centering
\begin{tabular}{|l|l|}
\hline
Manufacturer and Model & \begin{tabular}[c]{@{}l@{}}Zero Motorcycles 75-5 Series,\\ Model \# 30-0534\end{tabular} \\ \hline
Motor type & DC Brushless \\ \hline
Number of motors of this type used & 2 \\ \hline
Nominal motor voltage (Vdc) & 102 Vdc \\ \hline
Nominal/Peak motor current (A) & Nom: 250 / Peak: 420 \\ \hline
Nominal/Peak motor power & Nom: 24.9 / Peak: 41.8\\ \hline
Motor wiring - conductor size and type & $\geq$ 2 $AWG$\\ \hline
\end{tabular}
\caption{Motor Data}
\label{motortable}
\end{table}
The motor wiring (Weicheng) is permanently attached and grommetted to the motor casing. The wire gauge was measured to be 0.45 inches with single-layer XLPE insulation, so we believe the wire gauge to be greater to or equal to 2 AWG. 2AWG wire from Panduit with single-layer thermoplastic insulation is specified to have an outside diameter of 0.420 inches, less than the measured outside diameter of the motor leads.
\textit{Provide calculations for currents and voltages. State how this relates to the choice of cables and connectors used.}
The choice of cables and connectors were made in reverse from the motor's maximum current draw. With the maximum current draw for 10 seconds being 660A (at 100V) for both motors combined, we specified the smallest fuse rated for that amount of current draw: 175A continuous. For a 175A fuse, the smallest wire gauge specified from Appendix E of the rules is 2 AWG (rated up to 190A). All wire gauges and connectors specified for the high current path of the motors and/or accumulator are equal to or greater than 2 AWG.
\subsection{Motor Controller}
\textit{Describe the motor controller(s) used and reason for this particular choice. Add additional tables if multiple motor controller types are used.}
The motor controllers were chosen because they pair well with the chosen motors, and they can be controlled by either CAN or analog signals.
% \begin{table}[H]
\begin{table}[htbp]
\centering
\setlength\tabcolsep{2pt}
\begin{tabular}{|l|l|}
\hline
Manufacturer and Model & Sevcon Size 4 Gen 4 \\ \hline
Number of controllers of this type used & 2 \\ \hline
Maximum Input voltage (Vdc) & 116 VDC \\ \hline
Nominal Input current (A) & 350 A \\ \hline
Max Input Fuse (A) per Mfr. & 355 A \\ \hline
Output Voltage (Vdc) & Same as input voltage \\ \hline
\begin{tabular}[c]{@{}l@{}}Isolation rating between GLV \\ (power supply or control inputs) and\\ TS connections\end{tabular} & None \\ \hline
%\begin{tabular}[c]{@{}l@{}}Is the accelerator galvanically \\ isolated from the Tractive system per EV2.3\end{tabular} & No \\ \hline
\begin{tabular}[c]{@{}l@{}}Is the accelerator galvanically \\ isolated from the Tractive system per EV2.3\end{tabular} & No \\ \hline
\end{tabular}
\caption{Motor Controller Data}
\label{mctable}
\end{table}
\textit{If the answer to the last question is NO, how to you intend to comply with rule EV2.3 (an external isolator is acceptable)}
%\textcolor{red}{We will have isolation on our accelerator (throttle pedal potentiometers) by isolated CAN transceivers. Although we currently do not control the motor controller through CAN messages, we have a node next to the motor controller that listens to the throttle's data and outputs the same (isolated) analog signal. The only use of the CAN system with the throttle information is logging the data for the team's use. The throttle information is not altered in any way. }
\textit{Provide calculations for currents and voltages. State how this relates to the choice of cables and connectors used.}
Please see section \ref{mcurrent}, as the same choices were made between motors and motor controllers.
\subsection{Tractive System Measurement Points (TSMP)}
\textit{The TSMP must comply with FH Rule EV4.4. Describe the TSMP housing and location. Describe TSMP electrical connection point.}
The TSMPs are located on the motor controller housing, which is a polycarbonate, PLA and nylon enclosure that is located in the rear right side of the car, behind the main hoop. This housing also contains most of the shutdown components. Electrically, it is connected to the TS+ and TS- power lines (past the AIR's, in a separate connector and wiring bundle), in parallel to the motors but fused to 1A on both the TS+ and TS- lines. This fusing was cleared in Ticket \#1193, as we have a fuse protecting the wiring before the TSMPs. The housing includes all TS voltage components besides those in the accumulator and HVD. Please see Figure \ref{tractiveschem} for the schematic in the larger context, as Figure \ref{tsmpschem} is a schematic focused on the TSMPs, with and without the multimeter The TSMPs are mounted on the side panel PCB.
\begin{figure}[H]
\centering
\includegraphics{TSMP}
\caption{TSMP Schematic, with and without multimeter probes.}
\label{tsmpschem}
\end{figure}
The TSMP resistors follow the following calculations:
\begin{align}
V = I * R \\
100 V = I * 10,000 \ohm \\
I = 0.01A
\end{align}
\begin{align}
P = I * V \\
P = 0.01 I * 100V V \\
P = 1 W
\end{align}
Therefore, a 1W, 5k\ohm resistor will be placed before each TSMP banana jack. The resistor will be on a small, separate PCB or break out board that only contains the resistors to the TSMPs. This PCB does not have a finished design yet, but will be housed such that it is insulated from all adjacent conductive materials.\\
Another worst case scenario that could occur at the measuring points is a short between the TS and GLV systems over the banana jacks, again by operator error. In this scenario, the IMD will open the shutdown circuit.
\\
Figure \ref{MCHousingdiagram} shows the housing that the TSMPs are on. There are covers on top of the banana jacks, and the TSMPs are directly on side panel PCB.
The TSMP banana jacks are 72930-2 and 72930-0 Pomona Electronics 4 mm banana jacks (red and black, respectively). The TSMP resistors are Vishay Dale ALSR035K000FE12 (manufacturer's part number), rated for 122V and part of the ALSR series.
\begin{table}[H]
\centering
\begin{tabular}{|l|l|}
\hline
TSMP Output Protection Resistor Value & 5 k\ohm \\ \hline
Resistor Voltage Rating & 122V \\ \hline
Resistor Power Rating & 3W \\ \hline
\end{tabular}
\caption{TSMP Resistor Data}
\label{tsmptable}
\end{table}
\begin{figure}[H]
\centering
\includegraphics[width = 0.6 \textwidth]{tsmpcloseup}
\caption{Close up of TSMP pcb footprints (highlighted in green) on the side panel PCB. Note the bright cyan line of isolation between the GLV and TS. }
\label{tsmpPCB}
\end{figure}
\subsection{Pre-Charge System}
\textit{Describe your design for the pre-charge circuitry. Describe wiring, connectors and cables used.}
\begin{itemize}
\item Include a schematic of the pre-charge circuit
\item Include a plot of calculated TS Voltage vs. time
\item Include a plot of calculated TS Voltage vs. time
\item Include a plot of resistor power vs time
\end{itemize}
%Include a schematic of the pre-charge circuit
\begin{figure}[H]
\centering
\includegraphics[width = 0.7 \textwidth]{precharge}
\caption{Precharge System Schematic}
\label{prechargeschem}
\end{figure}
%Describe connectors and cables used
Ticket \#1209 stated compliance of the internal precharge system of the Sevcon motor controller instead of a separate precharge system consisting of a relay and resistor.
Once the shutdown circuit is closed, it will immediately power the coils of the normally closed discharge relay, the normally open precharge relay (found on the top in figure \ref{prechargeschem}, connecting BATT+ to the precharge tag), and the normally open TS- AIR. This opens the discharge relay, and closes the precharge relay and TS- AIR. Instead of connecting Batt+ to TS+ through a current limiting resistor, the precharge relay connects B+ to the key switch terminal on each of the Sevcon motor controllers. When powered by their key switch terminals, the motor controllers charge their internal capacitors up to around 50V for 0.5 seconds, then up to 90V (or another specified voltage) for 0.1 seconds before signaling though the CAN system that the precharge is complete. This CAN message causes a node in the battery to allow the shutdown circuit to close the TS+ AIR.
In figure \ref{prechargemeasurements}, the voltage of a test setup of the pre-charge system internal to the motor controller was measured. Because there is no resistor other than the motor controller, the current and power could not be calculated and/or graphed. As discussed above, the function describing the pre-charge is stepwise.
\begin{figure}[H]
\centering
\includegraphics[width = 0.8 \textwidth]{PrechargeVoltage}
\caption{Measured Precharge voltage for both the motor and the keyswitch activation}
\label{prechargemeasurements}
\end{figure}
\textit{Provide the following information:}
Because of our use of the motor controller's internal precharge functionality, the vehicle has no separate pre-charge resistor.
\begin{table}[H]
\centering
\begin{tabular}{|l|l|}
\hline
Resistor type & N/A \\ \hline
Resistance & N/A \ohm \\ \hline
Continuous power rating & N/A W \\ \hline
Overload power rating & N/A W \\ \hline
Voltage rating & N/A V \\ \hline
\end{tabular}
\caption{Data for the pre-charge resistor}
\label{prechargerestable}
\end{table}
%table of Data for the pre-charge relay
\begin{table}[H]
\centering
\begin{tabular}{|l|l|}
\hline
Relay MFR \& Type: & TE Connectivity LEV100 Series \\ \hline
Contact Arrangement & SPST-NO \\ \hline
Continuous DC contact current & 100A \\ \hline
Contact voltage rating & 900VDC \\ \hline
\end{tabular}
\caption{Data of the pre-charge relay}
\label{prechargerelaytable}
\end{table}
\subsection{Discharge System}
%Include a schematic of the discharge circuit
%Replace matlab figures with larger fonts...
\textit{Describe your concept for the discharge circuitry. Describe wiring, connectors and cables used.}
\begin{itemize}
\item Include a schematic of the pre-charge circuit
\item Include a plot of calculated TS Voltage vs. time
\item Include a plot of calculated “Discharge current” vs. time
\item Include a plot of resistor power vs time.
\end{itemize}
\textit{Provide the following information:}
\begin{figure}[H]
\centering
\includegraphics[width = 0.3 \textwidth]{discharge}
\caption{Schematic of the discharge system}
\label{dischargeschem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.8 \textwidth]{dischargevoltage}
\caption{Calculated discharge voltage vs. time}
\label{voltagedischarge}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.8 \textwidth]{dischargecurrent}
\caption{Calculated discharge current vs. time}
\label{currentdischarge}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width = 0.8 \textwidth]{dischargepower}
\caption{Calculated discharge power vs. time}
\label{powerdischarge}
\end{figure}
%Table of Data of the discharge circuit.
\begin{table}[H]
\centering
\begin{tabular}{|l|l|}
\hline
Resistor Type & \begin{tabular}[c]{@{}l@{}}Aluminium Housed Wirewound \\ Resistor\end{tabular} \\ \hline
Resistance & 220 \ohm \\ \hline
Continuous power rating & 50 W \\ \hline
Overload power rating & Unknown \\ \hline
Voltage rating & Not listed \\ \hline
Maximum expected current & 0.45 A \\ \hline
Average current & 0.1 A \\ \hline
\end{tabular}
\caption{Data of the discharge circuit}
\label{dischargetable}
\end{table}
The maximum discharge current and power is calculated as follows:
\begin{align}
V = I* R\\
100 V = I * 220 \ohm \\
I = 0.45 A \\
P = I * V\\
P = 0.45 * 100 \\
P = 45 W
\end{align}
Therefore the 50W, 220\ohm resistor will be able to handle the power of the discharge circuit continuously, but will only need to handle it for the start of discharge, which itself only lasts 5 seconds.
\subsection{High Voltage Disconnect (HVD)}
\textit{Describe your design for the HVD and how it is operated, wiring, and location. Describe how your design meets all requirements for EV4.7}
\begin{figure}[H]
\centering
\includegraphics[width = 0.5 \textwidth]{HVD}
\caption{Electrical connections of the HVD}
\label{hvdschem}
\end{figure}
We will be using an Anderson Power Products SB Smart VEH-G12 HVD (P/N 115158G12 Vehicle Side andP/N 115158G11 Outboard Side) as our high voltage disconnect, provided by Zero Motorcycles. The part we have in-hand also has a rubber grip on the outboard side of the HVD, which gives the user a better purchase on the HVD, as shown in Figure \ref{hvdpic}.
\begin{figure}[H]
\centering
\includegraphics[width = 0.4 \textwidth]{anderson_hvd_interlock}
\caption{Anderson Power Products SB Smart VEH-G12 HVD}
\label{hvdpic}
\end{figure}