-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_calib3d.py
90 lines (72 loc) · 2.83 KB
/
test_calib3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from camera_calibrator import CameraCalibrator
import numpy as np
import cv2
import pickle
import copy
from glob import glob
def pmat(mat):
'''Print matrix
'''
print(np.round(mat, 3))
print("")
def inv(mat):
return np.linalg.inv(mat)
def construct_xyz_coordinate_matrix(depth, intrinsics):
inv = np.linalg.inv(intrinsics)
def px_to_m(i, j):
cen = (i, j, 1)
point_m = np.dot(inv, cen)
return point_m[0], point_m[1], depth[i][j]
xyz_coord = np.empty((depth.shape[0], depth.shape[1], 3), dtype = np.float32)
print(xyz_coord.shape[0])
print(xyz_coord.shape[1])
for i in range(xyz_coord.shape[0]):
for j in range(xyz_coord.shape[1]):
x, y, z = px_to_m(i, j)
xyz_coord[i][j][0] = y
xyz_coord[i][j][1] = x
xyz_coord[i][j][2] = z
return xyz_coord
if __name__ == "__main__":
calib = CameraCalibrator(board_shape=(6, 7), tile_side=0.10, apriltag_families="tag36h10")
Ta_is = []
Tb_is = []
paths = glob("data/157*/")
xyz_coordinates_matrix = None
for path in paths:
if path == "data/1574786828/":
continue
depth = np.load(path + "depth.npy")
color = np.load(path + "color.npy")
intrinsics = np.load(path + "intrinsics.npy")
A_trans = np.load(path + "translation.npy")
A_rot = np.load(path + "rotation.npy")
mount_to_world = calib.transquat_to_mat(A_trans, A_rot) # point_world = mount_to_world * point_mount
world_to_mount = inv(mount_to_world)
if xyz_coordinates_matrix is None:
xyz_coordinates_matrix = construct_xyz_coordinate_matrix(depth, intrinsics)
image = cv2.cvtColor(color, cv2.COLOR_RGB2GRAY)
# optical_to_chess = calib.chessboard_extrinsics_3D(image, xyz_coordinates_matrix)
optical_to_chess = calib.chessboard_extrinsics_2D(image)
# Ta_is.append(np.mat(world_to_cam))
# Tb_is.append(np.mat(cam_to_chess))
mount_to_optical = np.matrix(np.array([[0, 0, 1, 0],
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 0, 1]]))
# print("world_to_mount:")
# pmat(world_to_mount)
# print("mount_to_optical:")
# pmat(mount_to_optical)
print("optical_to_chess:")
pmat(optical_to_chess)
# print("Closed loop:")
# chess_to_world = inv(world_to_mount)*mount_to_optical*optical_to_chess
# pmat(chess_to_world)
# X = calib.eye_in_hand_finetunning(Ta_is, Tb_is)
# print("X:")
# pmat(X)
# print("world to chess")
# for world_to_cam, cam_to_chess in zip(Ta_is, Tb_is):
# pmat(np.linalg.inv(cam_to_chess*X*world_to_cam))
# pmat(np.linalg.inv(cam_to_chess*np.linalg.inv(X)*world_to_cam))