-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcamera_calibrator.py
310 lines (268 loc) · 12.4 KB
/
camera_calibrator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import apriltag
import cv2
import numpy as np
from scipy.spatial import distance as dist
from scipy.spatial.transform import Rotation as R
from scipy.linalg import logm, sqrtm, inv, expm
from scipy.optimize import minimize
from math import sqrt
import copy
class CameraCalibrator():
def __init__(self, board_shape = (3, 4), tile_side = 0.062, apriltag_families = "tag36h10"):
self.board_shape = board_shape
self.tile_side = tile_side
self.apriltag_families = apriltag_families
def transquat_to_mat(self, trans, quaternion):
''' Given a translation vector and a quaternion returns transformation matrix
'''
# print(trans)
M = np.eye(4)
rot_matrix = R.from_quat(quaternion).as_dcm()
M[0:3,0:3] = rot_matrix
M[0:3, 3] = trans
return np.matrix(M)
#TODO(oleguer): Return intrinsics as well
def chessboard_extrinsics_2D(self, image):
'''Given checkerboard+apriltag 2D image, returns extrinsics:
transformation matrix from checkerboard to camera frame
'''
self.corners = self.__get_oriented_corners(image)
# 2. Get matrix of chessboard frame values
corners_m = []
for i in range(self.board_shape[1]): #TODO(oleguer): Review board_shape params!
for j in range(self.board_shape[0]):
corners_m.append([i*self.tile_side, j*self.tile_side, 0])
corners_m = [np.array(corners_m, dtype=np.float32)]
# 3. Compute transformation
ret, intrinsics_mat, distortion_coef, rotation_vect, translation_vect =\
cv2.calibrateCamera(corners_m, [self.corners], self.image.shape[::-1], None, None)
rotation_vect = np.array(rotation_vect).reshape(3)
translation_vect = np.array(translation_vect).reshape(3)
rot_matrix = R.from_rotvec(rotation_vect).as_dcm()
# From camera to checkerboard
camera_to_chessboard = np.eye(4)
camera_to_chessboard[0:3,0:3] = rot_matrix
camera_to_chessboard[0:3, 3] = translation_vect
# From checkerboard to camera
# chessboard_to_camera = np.eye(4)
# chessboard_to_camera[0:3,0:3] = rot_matrix.T
# chessboard_to_camera[0:3, 3] = -np.dot(rot_matrix.T, translation_vect)
return camera_to_chessboard
def chessboard_extrinsics_3D(self, image, xyz_coordinates_matrix):
''' Given image of a checkerboard with apriltag and xyz_coordinates_matrix,
Returns transformation matrix from checkerboard to camera frame
xyz_coordinates_matrix meaning: a 3 channel numpy array where:
channel 0: x coordinates
channel 1: y coordinates
channel 3: z coordinates
NOTE: Make sure the channels are in the rigth order (opencv can mess it up)!!!!
(Use this if you have a 3D sensor, otherwise use get_extrinsics_2D)
'''
# 1. Get oriented corners
self.corners = self.__get_oriented_corners(image)
self.plot()
# 2. Get matrix of camera frame values
corners_camera_frame = []
xyz_coordinates_matrix = np.array(xyz_coordinates_matrix)
for corner in self.corners:
corner = corner[0]
# x = xyz_coordinates_matrix[int(corner[0])][int(corner[1])][0]
# y = xyz_coordinates_matrix[int(corner[0])][int(corner[1])][1]
# z = xyz_coordinates_matrix[int(corner[0])][int(corner[1])][2]
x = xyz_coordinates_matrix[int(corner[1])][int(corner[0])][0]
y = xyz_coordinates_matrix[int(corner[1])][int(corner[0])][1]
z = xyz_coordinates_matrix[int(corner[1])][int(corner[0])][2]
corner_camera = [x, y, z]
corners_camera_frame.append(corner_camera)
cb_frame_copy = copy.deepcopy(corners_camera_frame)
# 3. Get matrix of chessboard frame values
corners_chessboard_frame = []
for i in range(self.board_shape[1]): #TODO(oleguer): Review board_shape params!
for j in range(self.board_shape[0]):
corners_chessboard_frame.append([j*self.tile_side, i*self.tile_side, 0])
camera_frame_copy = copy.deepcopy(corners_chessboard_frame)
# print(corners_camera_frame)
# print(corners_chessboard_frame)
camera_to_chess = self.__rigid_transform_3D(
np.array(corners_camera_frame), np.array(corners_chessboard_frame))
# Reproject to check if it works
reprojected = []
for xyz_corner in camera_frame_copy:
repro = np.dot(np.linalg.inv(camera_to_chess), np.append(xyz_corner, [1]))
reprojected.append(repro)
self.__reproject(image, xyz_coordinates_matrix, reprojected)
error = 0
for xyz_corner, cam_frame in zip(cb_frame_copy, camera_frame_copy):
repro = np.dot(camera_to_chess, np.append(xyz_corner, [1]))
error += dist.euclidean(repro[0:3], cam_frame)
error = error/len(cb_frame_copy)
print("Reprojection error: " + str(np.round(1000*error, 2)) + " mm")
return np.matrix(camera_to_chess)
def __reproject(self, image, xyz_coordinates_matrix, xyz_points):
xyz_coordinates_matrix
for point in xyz_points:
# print(point)
coord = copy.deepcopy(xyz_coordinates_matrix)
coord[:, :, 0] -= point[0]
coord[:, :, 1] -= point[1]
coord[:, :, 2] -= point[2]
dist = np.sqrt(np.square(coord[:, :, 0]) + np.square(coord[:, :, 1]) + np.square(coord[:, :, 2]))
image_point = np.unravel_index(np.argmin(dist, axis=None), dist.shape)
image_point = (image_point[1], image_point[0])
image = cv2.drawMarker(image, image_point, (255))
# cv2.imshow("image", image)
# cv2.waitKey(0)
def eye_in_hand_finetunning(self, Ta_is, Tb_is):
''' Given:
Ta_is: List of world_to_cammount transform matrices
Tb_is: List of cam_to_chess transform matrices
Returns:
X: cammount_to_cam transform matrix (mounting position to optical base)
'''
ABs = []
for i in range(0, len(Ta_is)):
for j in range(i+1, len(Ta_is)):
A_i = np.mat(Ta_is[i])
A_j = np.mat(Ta_is[j])
A = A_j*inv(A_i)
# print("A:")
# print(np.round(A, 2))
B_i = np.mat(Tb_is[i])
B_j = np.mat(Tb_is[j])
B = inv(B_j)*B_i
# print("B:")
# print(np.round(B, 2))
# print("----")
ABs.append((A, B))
X = self.get_X_aprox(ABs)
# Analize result:
point = np.mat(np.array([1, 1, 1, 1]))
no_corrections = []
corrections = []
for world_to_cam, cam_to_chess in zip(Ta_is, Tb_is):
no_corrections.append(cam_to_chess*world_to_cam*point.T)
corrections.append(cam_to_chess*X*world_to_cam*point.T)
uncorrected_dev = np.linalg.norm(np.std(no_corrections, axis=0)[0:3])
corrected_dev = np.linalg.norm(np.std(corrections, axis=0)[0:3])
dev_improvement = (uncorrected_dev - corrected_dev)/uncorrected_dev
print("Deviation improvement: " + str(np.round(100*dev_improvement)) + "%")
mean_corrected = np.linalg.norm(
np.mean(no_corrections, axis=0)[0:3] - np.mean(corrections, axis=0)[0:3])
print("Distance correction: " + str(np.round(1000*mean_corrected)) + "mm")
return X
def get_X_aprox(self, ABs):
def get_trans_mat(X):
M = np.mat(np.eye(4))
M[0:3,0:3] = R.from_rotvec(X[0:3]).as_dcm()
M[0, 3] = X[3]
M[1, 3] = X[4]
M[2, 3] = X[5]
return M
def objective(X):
M = get_trans_mat(X)
error = 0
for A, B in ABs:
DIF = M*A-B*M
error += np.linalg.norm(DIF)
return error
X = np.zeros(6)
bounds = [(-10, 10), (-10, 10), (-10, 10),\
(-0.01, 0.01), (-0.01, 0.01), (-0.01, 0.01)] #TODO:(Oleguer) Review this bounds!!!
res = minimize(objective, X, bounds=bounds)
print("Optimization succesful: " + str(res.success))
return get_trans_mat(res.x)
def plot(self):
'''Debug function to make sure corners and apriltag make sense
'''
img = cv2.cvtColor(self.image, cv2.COLOR_GRAY2RGB)
cv2.circle(img, (self.apriltag_center[0], self.apriltag_center[1]), 5, (0, 0, 255), -1)
img = cv2.drawChessboardCorners(img, self.board_shape, self.corners, self.found)
cv2.imshow("img", img)
cv2.waitKey(0)
# PRIVATE
def __rigid_transform_3D(self, A, B):
''' Returns transformation matrix between two sets of 3D points
'''
A = np.mat(A)
B = np.mat(B)
assert len(A) == len(B)
N = A.shape[0]; # total points
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
AA = A - np.tile(centroid_A, (N, 1))
BB = B - np.tile(centroid_B, (N, 1))
H = np.transpose(AA) * BB
U, S, Vt = np.linalg.svd(H)
R = Vt.T * U.T
if np.linalg.det(R) < 0:
Vt[2,:] *= -1
R = Vt.T * U.T
t = -R*centroid_A.T + centroid_B.T
M = np.eye(4)
M[0:3, 0:3] = R
M[0:3, 3] = t.flatten()
return M
def __get_oriented_corners(self, image):
# 0. Reset debug variables: TODO(oleguer): Remove this when everything works
self.found = False
self.corners = []
self.apriltag = None
self.image = image
# 1. Get chessboard corners in pixel position
self.found, unoriented_corners = cv2.findChessboardCorners(image, self.board_shape)
if not self.found:
print("ERROR: Corners not found!")
# 2. Get apriltag center
self.apriltag_center = self.get_apriltag_center(image)
assert(self.apriltag_center is not None)
# 3. Orient corners
self.corners = self.__orient_corners(unoriented_corners, self.apriltag_center)
# self.corners = unoriented_corners #TODO(oleguer): Corners orienting doesnt work, fix it
return self.corners #TODO(oleguer): Shouldnt be returning self variable, fix this
def get_apriltag_center(self, img):
# print(type(img))
# print(type(img[0][0]))
options = apriltag.DetectorOptions(families=self.apriltag_families)
detector = apriltag.Detector(options=options)
result = detector.detect(img)
if len(result) == 0:
print("Apriltag not found!")
return None
return np.array(result[0].center, dtype=np.int16)
def __orient_corners(self, corners, april_pos):
'''Makes sure all corners are sorted in the following way:
a_tag
C1 -> C2 -> ... -> Cn
Cn+1 -> ... -> C2n
... -> Cnn
'''
n = self.board_shape[1] - 1
m = self.board_shape[0] - 1
corners_mat = np.reshape(corners, (n+1, m+1, 1, 2))
# Get closest corner
distances = []
distances.append(dist.euclidean(april_pos, corners_mat[0][0])) # 0
distances.append(dist.euclidean(april_pos, corners_mat[n][0])) # 1
distances.append(dist.euclidean(april_pos, corners_mat[n][m])) # 2
distances.append(dist.euclidean(april_pos, corners_mat[0][m])) # 3
closest_corner = np.argmin(distances)
if closest_corner == 1:
corners_mat = np.flip(corners_mat, axis=0)
elif closest_corner == 2:
corners_mat = np.flip(corners_mat, axis=0)
corners_mat = np.flip(corners_mat, axis=1)
elif closest_corner == 3:
corners_mat = np.flip(corners_mat, axis=1)
# Need to transpose?
april_v = (april_pos[0] - corners_mat[0][0][0][0], april_pos[1] - corners_mat[0][0][0][1])
second_v = (corners_mat[0][1][0][0] - corners_mat[0][0][0][0], corners_mat[0][1][0][1] - corners_mat[0][0][0][1])
april_v = april_v/np.linalg.norm(april_v, ord = 2)
second_v = second_v/np.linalg.norm(second_v, ord = 2)
if (abs(np.dot(april_v, second_v)) < 0.5):
print("Transposing to fix orientation")
corners_mat = corners_mat.T
# Return flattened corners
corners = corners_mat.reshape((n+1)*(m+1), 1, 2)
return corners
if __name__ == "__main__":
pass