From e0602fc5a8f00cec4f470106fcc478e541b7a7aa Mon Sep 17 00:00:00 2001 From: "ang.a" Date: Mon, 26 Feb 2024 12:38:29 +0200 Subject: [PATCH] added super ivim dc --- .../TCML_TechnionIIT/SUPER-IVIM-DC/README.md | 21 +++ .../SUPER-IVIM-DC/sample.ipynb | 167 ++++++++++++++++++ 2 files changed, 188 insertions(+) create mode 100644 src/original/TCML_TechnionIIT/SUPER-IVIM-DC/README.md create mode 100644 src/original/TCML_TechnionIIT/SUPER-IVIM-DC/sample.ipynb diff --git a/src/original/TCML_TechnionIIT/SUPER-IVIM-DC/README.md b/src/original/TCML_TechnionIIT/SUPER-IVIM-DC/README.md new file mode 100644 index 0000000..fe191ef --- /dev/null +++ b/src/original/TCML_TechnionIIT/SUPER-IVIM-DC/README.md @@ -0,0 +1,21 @@ +# SUPER-IVIM-DC + +Provided here is a sample Jupyter notebook for the SUPER-IVIM-DC package. + +Full README and usage instructions can be found here: https://github.com/TechnionComputationalMRILab/SUPER-IVIM-DC or https://pypi.org/project/super-ivim-dc/0.4.0/ + +Citation: + +``` +@article{ + Korngut_Rotman_Afacan_Kurugol_Zaffrani-Reznikov_Nemirovsky-Rotman_Warfield_Freiman_2022, + title={SUPER-IVIM-DC: Intra-voxel incoherent motion based fetal lung maturity assessment from limited DWI data using supervised learning coupled with data-consistency}, + volume={13432}, DOI={10.1007/978-3-031-16434-7_71}, + journal={Lecture Notes in Computer Science}, + author={Korngut, Noam and Rotman, Elad and Afacan, Onur and Kurugol, Sila and Zaffrani-Reznikov, Yael and Nemirovsky-Rotman, Shira and Warfield, Simon and Freiman, Moti}, + year={2022}, + pages={743–752} +} +``` + +[The paper is also available on ArXiv](https://arxiv.org/abs/2206.03820). diff --git a/src/original/TCML_TechnionIIT/SUPER-IVIM-DC/sample.ipynb b/src/original/TCML_TechnionIIT/SUPER-IVIM-DC/sample.ipynb new file mode 100644 index 0000000..90dae5b --- /dev/null +++ b/src/original/TCML_TechnionIIT/SUPER-IVIM-DC/sample.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "working_dir: str = './working_dir'\n", + "super_ivim_dc_filename: str = 'super_ivim_dc' # do not include .pt\n", + "ivimnet_filename: str = 'ivimnet' # do not include .pt\n", + "\n", + "bvalues = np.array([0,15,30,45,60,75,90,105,120,135,150,175,200,400,600,800])\n", + "snr = 10\n", + "sample_size = 100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulate" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run training, generate .pt files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from super_ivim_dc.train import train\n", + "\n", + "train(\n", + " SNR=snr, \n", + " bvalues=bvalues, \n", + " super_ivim_dc=True,\n", + " ivimnet=True,\n", + " work_dir=working_dir,\n", + " super_ivim_dc_filename=super_ivim_dc_filename,\n", + " ivimnet_filename=ivimnet_filename,\n", + " verbose=False\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Files that will be created:\n", + "\n", + "- **super_ivim_dc_init.json** - contains the initial values used in the training\n", + "- **super_ivim_dc_init_NRMSE.csv** - ???\n", + "- **super_ivim_dc_init.pt** - the pytorch model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test\n", + "\n", + "Generate a simulated signal + ..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from super_ivim_dc.infer import test_infer\n", + "\n", + "test_infer(\n", + " SNR=snr,\n", + " bvalues=bvalues,\n", + " work_dir=working_dir,\n", + " super_ivim_dc_filename=super_ivim_dc_filename,\n", + " ivimnet_filename=ivimnet_filename,\n", + " save_figure_to=None, # if set to None, the figure will be shown in the notebook\n", + " sample_size=sample_size,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate simulated signal" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from super_ivim_dc.IVIMNET import simulations\n", + "\n", + "IVIM_signal_noisy, Dt, f, Dp = simulations.sim_signal(\n", + " SNR=snr, \n", + " bvalues=bvalues, \n", + " sims=sample_size\n", + ")\n", + "\n", + "Dt, f, Dp = np.squeeze(Dt), np.squeeze(f), np.squeeze(Dp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run inference on the simulated signal" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from super_ivim_dc.infer import infer_from_signal\n", + "\n", + "Dp_ivimnet, Dt_ivimnet, Fp_ivimnet, S0_ivimnet = infer_from_signal(\n", + " signal=IVIM_signal_noisy, \n", + " bvalues=bvalues,\n", + " model_path=f\"{working_dir}/{ivimnet_filename}.pt\",\n", + ")\n", + "\n", + "Dp_superivimdc, Dt_superivimdc, Fp_superivimdc, S0_superivimdc = infer_from_signal(\n", + " signal=IVIM_signal_noisy, \n", + " bvalues=bvalues,\n", + " model_path=f\"{working_dir}/{super_ivim_dc_filename}.pt\",\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "super_ivim_dc", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}