From cc69f5f62315863d764977b3f2f138194bc5c0e5 Mon Sep 17 00:00:00 2001 From: Magne Sjaastad Date: Fri, 12 Apr 2024 13:33:03 +0200 Subject: [PATCH] Fix typo Implemented in RigGeoMechBoreHoleStressCalculator::sigmaTMinOfMin --- content/plot-window/WellBoreStabilityPlots.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/content/plot-window/WellBoreStabilityPlots.md b/content/plot-window/WellBoreStabilityPlots.md index 9d2720a30..f6898d90c 100644 --- a/content/plot-window/WellBoreStabilityPlots.md +++ b/content/plot-window/WellBoreStabilityPlots.md @@ -87,9 +87,9 @@ To estimate the fracture gradient *FG*, first step is to find the principal effe $$\sigma'_1 = \sigma'_1 (\theta)= \sigma'_r = p_w - p_0$$ -$$\sigma'_2 = \sigma'_2 (\theta) = \sigma\_{t \max} = \frac{1}{2} \left( (\sigma_z + \sigma\_\theta) + \sqrt{(\sigma_z + \sigma\_\theta)^2 + 4\tau\_{\theta z}^2} \right) - p_0$$ +$$\sigma'_2 = \sigma'_2 (\theta) = \sigma\_{t \max} = \frac{1}{2} \left( (\sigma_z + \sigma\_\theta) + \sqrt{(\sigma_z - \sigma\_\theta)^2 + 4\tau\_{\theta z}^2} \right) - p_0$$ -$$\sigma'_2 = \sigma'_3 (\theta) = \sigma\_{t \min} = \frac{1}{2} \left( (\sigma_z + \sigma\_\theta) - \sqrt{(\sigma_z + \sigma\_\theta)^2 + 4\tau\_{\theta z}^2} \right) - p_0$$ +$$\sigma'_2 = \sigma'_3 (\theta) = \sigma\_{t \min} = \frac{1}{2} \left( (\sigma_z + \sigma\_\theta) - \sqrt{(\sigma_z - \sigma\_\theta)^2 + 4\tau\_{\theta z}^2} \right) - p_0$$ Next step is to solve for the value of $\theta \in [0 - 180]$ that yields $\sigma'_3 (\theta) = 0$ which in turn gives us $\sigma\_\theta$ which can be used to solve for $P_w$ in the Kirsch equations.