forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jit_trace.cpp
319 lines (278 loc) · 10.6 KB
/
jit_trace.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/symbol.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/insert_guards.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/runtime/jit_trace.h>
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <unordered_map>
namespace torch {
namespace jit {
namespace {
// A helper structure to maintain the mappings
// between values from a scripted graph and
// a traced graph
struct TracingData {
std::unordered_map<Value*, Value*> old_to_new_;
std::shared_ptr<Graph> traced_graph_ = nullptr;
TracingData() {
traced_graph_ = std::make_shared<Graph>();
}
};
// create a node in the traced graph that corresponds to `node`
// in the scripted graph. Similar to how `cloneNode` works
Node* traceNode(Node* node, TracingData& td, Stack& stack) {
GRAPH_DEBUG("Tracing node ", getHeader(node));
auto* block = td.traced_graph_->block();
auto env = [&td](Value* v) { return td.old_to_new_.at(v); };
auto new_node = block->appendNode(td.traced_graph_->createClone(node, env));
for (size_t i = 0; i < node->outputs().size(); ++i) {
auto oo = node->outputs()[i];
auto no = new_node->outputs()[i];
no->copyMetadata(oo);
td.old_to_new_[oo] = no;
GRAPH_DEBUG(
"Mapping ",
oo->debugName(),
" to ",
no->debugName()); // old to new outputs
}
return new_node;
}
void eraseAllOutputs(Node* opt_pn) {
// NOLINTNEXTLINE
for (int i = opt_pn->outputs().size() - 1; i >= 0; i--) {
opt_pn->eraseOutput(i);
}
}
void insertTracingNodes(Block*, ProfilingRecord*, TracingData&);
// The subtlety in `createPropNodeForIfBlock` is that we need to create
// a "propagate" node that will propagate the mapping between the outputs
// of a then/else block and the outputs in the traced graph onto the outputs
// of the if node in the scripted node. Note, if nodes will disappear in the
// the traced graph but they are still used in the scripted graph.
void createPropNodeForIfBlock(
Block* b,
Node* n,
ProfilingRecord* pr,
TracingData& td) {
std::vector<Value*> empty_values{};
auto opt_pn = pr->createProfileIValueNode(empty_values);
eraseAllOutputs(opt_pn);
insertTracingNodes(b, pr, td);
b->appendNode(opt_pn);
std::function<void(Stack&)> optional_profiler =
[pr, n, b, &td](Stack& stack) {
std::lock_guard<std::mutex> lock(pr->mutex_);
// frame_id is unused
int64_t frame_id = 0;
pop(stack, frame_id);
for (size_t i = 0; i < b->outputs().size(); i++) {
// propagate a then-block or else-output to an if-output
auto nbo = td.old_to_new_.at(b->outputs()[i]);
td.old_to_new_[n->outputs()[i]] = nbo;
GRAPH_DEBUG(
"Map ",
td.old_to_new_[n->outputs()[i]]->debugName(),
" to ",
nbo->debugName());
}
};
// uncomment for debugging
// opt_pn->i_(Symbol::attr("propagate"), 1);
opt_pn->setCallback(optional_profiler);
}
// loop counter is implicit in the loop body outputs, we need to make
// it explicit so it can used in 2+ iterations
void traceLoopCounter(Node* n, ProfilingRecord* pr, TracingData& td) {
LoopView lv(n);
auto opt_pn = pr->createProfileIValueNode(lv.currentTripCount());
eraseAllOutputs(opt_pn);
lv.bodyBlock()->prependNode(opt_pn);
std::function<void(Stack&)> optional_profiler = [pr, n, &td](Stack& stack) {
std::lock_guard<std::mutex> lock(pr->mutex_);
// frame_id is unused
int64_t frame_id = 0;
pop(stack, frame_id);
int64_t loop_counter = 0;
pop(stack, loop_counter);
WithInsertPoint wip(td.traced_graph_->block());
auto lc = td.traced_graph_->insertConstant(loop_counter);
LoopView lv(n);
td.old_to_new_[lv.currentTripCount()] = lc;
};
// uncomment for debugging
// opt_pn->i_(Symbol::attr("loop_counter"), 1);
opt_pn->setCallback(optional_profiler);
}
// Similar to how we propagate the mappings for If nodes, we need to propagate
// the mappings from the loop body to the beginning of the block in case we
// run another iteration and to the outputs of the Loop node, for any logic
// downstream that uses the output values of the loop node
static void traceLoop(Node* n, ProfilingRecord* pr, TracingData& td) {
std::vector<Value*> empty_values{};
// this is a propagation node for block inputs (phi values)
// these come from either `prim::Loop` inputs or loop body outputs
{
auto opt_pn = pr->createProfileIValueNode(empty_values);
eraseAllOutputs(opt_pn);
opt_pn->insertBefore(n);
LoopView lv(n);
std::function<void(Stack&)> optional_profiler = [pr, n, &td](Stack& stack) {
std::lock_guard<std::mutex> lock(pr->mutex_);
// frame_id is unused
int64_t frame_id = 0;
pop(stack, frame_id);
LoopView lv(n);
TORCH_INTERNAL_ASSERT(
lv.bodyCarriedInputs().size() == lv.carriedInputs().size());
for (size_t i = 0; i < lv.bodyCarriedInputs().size(); i++) {
auto bno = td.old_to_new_.at(lv.carriedInputs()[i]);
td.old_to_new_[lv.bodyCarriedInputs()[i]] = bno;
GRAPH_DEBUG(
"Map ",
td.old_to_new_[lv.bodyCarriedInputs()[i]]->debugName(),
" to ",
bno->debugName());
}
};
// uncomment for debugging
// opt_pn->i_(Symbol::attr("loop_entry"), 1);
opt_pn->setCallback(optional_profiler);
}
{
insertTracingNodes(LoopView(n).bodyBlock(), pr, td);
traceLoopCounter(n, pr, td);
}
// this is a propagation node for loop outputs
{
auto opt_pn = pr->createProfileIValueNode(empty_values);
eraseAllOutputs(opt_pn);
LoopView(n).bodyBlock()->appendNode(opt_pn);
// opt_pn->i_(Symbol::attr("loop_propagate"), 1);
std::function<void(Stack&)> optional_profiler = [pr, n, &td](Stack& stack) {
std::lock_guard<std::mutex> lock(pr->mutex_);
// frame_id is unused
int64_t frame_id = 0;
pop(stack, frame_id);
LoopView lv(n);
TORCH_INTERNAL_ASSERT(
lv.bodyCarriedOutputs().size() == lv.carriedOutputs().size());
for (size_t i = 0; i < lv.bodyCarriedOutputs().size(); i++) {
auto bno = td.old_to_new_.at(lv.bodyCarriedOutputs()[i]);
td.old_to_new_[lv.carriedOutputs()[i]] = bno;
GRAPH_DEBUG(
"Map ",
td.old_to_new_[lv.bodyCarriedOutputs()[i]]->debugName(),
" to ",
bno->debugName());
}
};
// uncomment for debugging
// opt_pn->i_(Symbol::attr("loop_exit"), 1);
opt_pn->setCallback(optional_profiler);
}
}
// walks all the nodes in a block and adds profiled nodes to each node
// see the comment for `optional_profiler` below
void insertTracingNodes(Block* block, ProfilingRecord* pr, TracingData& td) {
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
auto n = *it;
it++;
GRAPH_DEBUG("Inserting trace for ", getHeader(n));
if (n->kind() == prim::If) {
IfView ifv(n);
createPropNodeForIfBlock(ifv.thenBlock(), n, pr, td);
createPropNodeForIfBlock(ifv.elseBlock(), n, pr, td);
continue;
}
if (n->kind() == prim::Loop) {
traceLoop(n, pr, td);
continue;
}
TORCH_INTERNAL_ASSERT(n->blocks().empty());
auto opt_pn = pr->createProfileIValueNode(n->outputs());
eraseAllOutputs(opt_pn);
opt_pn->insertAfter(n);
// we only use the `opt_pn->node()` to trigger the handler
// we still capture the actual scripted node `n` we want to trace
// we look at its inputs, map them to the inputs in the traced graph
// and create a new node with `traceNode`
std::function<void(Stack&)> optional_profiler = [pr, n, &td](Stack& stack) {
std::lock_guard<std::mutex> lock(pr->mutex_);
// frame_id is unused
int64_t frame_id = 0;
pop(stack, frame_id);
GRAPH_DEBUG("Tracing ", getHeader(n));
auto tracer = traceNode(n, td, stack);
auto ouputs_size = n->outputs().size();
auto iivs = pop(stack, ouputs_size);
for (size_t j = 0; j < ouputs_size; j++) {
auto& iiv = iivs[j];
if (iiv.isTensor()) {
auto t = iiv.toTensor();
auto type = t.defined() ? tensorTypeInCurrentExecutionContext(t)
: TensorType::get();
tracer->outputs().at(j)->setType(type);
}
}
};
opt_pn->setCallback(optional_profiler);
}
}
} // namespace
// To trace graph we create a profile node for every one
// in a scripted graph. When a profiled node handler runs
// we insert a new traced node in a trace graph
// If the profiled node handler is called in a loop
// we will have multiple nodes.
// We also maintain the mapping between the outputs of traced
// nodes and the outputs of the node in the scripted graph.
// There are a few subtleties with tracing Ifs and Loops
// discussed above
std::shared_ptr<Graph> TraceGraph(std::shared_ptr<Graph> graph, Stack& stack) {
TracingData td;
GRAPH_DUMP("Before Inline:", graph);
Inline(*graph.get());
EliminateDeadCode(graph);
GRAPH_DUMP("After Inline:", graph);
auto pr = ProfilingRecord::instrumentGraph(graph);
for (auto inp : pr->profiled_graph_->inputs()) {
auto ni = td.traced_graph_->addInput();
ni->copyMetadata(inp);
ni->setType(ni->type());
td.old_to_new_[inp] = ni;
}
// Set type of the graph inputs using the inputs from the stack.
// This needs to be done before running the interpreter because the stack
// will only have the outputs after the run.
for (auto i : c10::irange(stack.size())) {
if (stack[i].isTensor()) {
td.traced_graph_->inputs().at(i)->setType(
tensorTypeInCurrentExecutionContext(stack[i].toTensor()));
}
}
ProfilingRecord::removeProfileCounter(pr->profiled_graph_->block());
ProfilingRecord::removeProfilingNodes(pr->profiled_graph_->block());
insertTracingNodes(pr->profiled_graph_->block(), pr.get(), td);
GRAPH_DUMP("Profiling Graph:", pr->profiled_graph_);
Code cd(pr->profiled_graph_, "");
InterpreterState is{cd};
is.run(stack);
for (auto out : pr->profiled_graph_->outputs()) {
td.traced_graph_->block()->registerOutput(td.old_to_new_.at(out));
}
GRAPH_DUMP("Traced graph:", td.traced_graph_);
return td.traced_graph_;
}
} // namespace jit
} // namespace torch