forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
promoted_prim_ops.cpp
253 lines (219 loc) · 7.39 KB
/
promoted_prim_ops.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <ATen/ScalarOps.h>
#include <torch/csrc/jit/mobile/promoted_prim_ops.h>
namespace torch {
namespace jit {
void tupleIndex(Stack& stack) {
int64_t index = pop(stack).toInt();
auto tuple = pop(stack).toTuple();
auto norm_index = normalizeIndex(index, tuple->elements().size());
if (norm_index < 0 ||
norm_index >= static_cast<int64_t>(tuple->elements().size())) {
throw std::out_of_range("Tuple list index out of range");
}
stack.emplace_back(tuple->elements()[norm_index]);
}
void raiseException(Stack& stack) {
// this kernel supports RaiseException with only one argument: the error
// DEPRECATED from bytecode_version 8;
// Please do not make any changes to this to support BC
throw JITException(pop(stack).toStringRef());
}
void raiseExceptionWithMessage(Stack& stack) {
// this kernel supports RaiseException with only two arguments: the error and
// the message Please make changes only to this kernel
c10::optional<std::string> qualified_class_name =
pop(stack).toOptional<std::string>();
std::string message;
pop(stack, message);
throw JITException(message, qualified_class_name);
}
void is(Stack& stack) {
IValue self, obj;
pop(stack, self, obj);
push(stack, self.is(obj));
}
void unInitialized(Stack& stack) {
push(stack, IValue::uninitialized());
}
void isNot(Stack& stack) {
IValue self, obj;
pop(stack, self, obj);
push(stack, !self.is(obj));
}
void aten_format(Stack& stack) {
size_t num_inputs = pop(stack).toInt();
format(stack, num_inputs);
}
void size(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
pack(stack, t.sizes().vec());
}
void sym_size(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
pack(stack, t.sym_sizes().vec());
}
void sym_size_int(Stack& stack) {
auto dim = pop(stack).toInt();
auto t = pop(stack).toTensor();
push(stack, t.sym_sizes()[dim]);
}
void sym_stride_int(Stack& stack) {
auto dim = pop(stack).toInt();
auto t = pop(stack).toTensor();
push(stack, t.sym_strides()[dim]);
}
void sym_numel(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
push(stack, t.sym_numel());
}
void sym_storage_offset(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
push(stack, t.sym_storage_offset());
}
void sym_stride(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
pack(stack, t.sym_strides().vec());
}
void device(Stack& stack) {
push(stack, pop(stack).toTensor().device());
}
void dtype(Stack& stack) {
at::Tensor a;
pop(stack, a);
push(stack, static_cast<int64_t>(a.scalar_type()));
}
void layout(Stack& stack) {
push(stack, pop(stack).toTensor().layout());
}
void toPrimDType(Stack& stack) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool non_blocking;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool copy;
pop(stack, non_blocking, copy);
c10::optional<at::ScalarType> scalarType =
pop(stack).toOptional<at::ScalarType>();
c10::optional<c10::Device> device = c10::nullopt;
at::Tensor self = pop(stack).toTensor();
push(stack, to_dispatch(self, device, scalarType, non_blocking, copy));
}
void dim(Stack& stack) {
at::Tensor arg = pop(stack).toTensor();
push(stack, arg.dim());
}
void _not(Stack& stack) {
push(stack, !pop(stack).toBool());
}
void boolTensor(Stack& stack) {
at::Tensor a;
pop(stack, a);
push(stack, at::native::is_nonzero(a));
}
void toList(Stack& stack) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int elem_ty_val;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int dim_val;
at::Tensor t;
pop(stack, elem_ty_val);
pop(stack, dim_val);
pop(stack, t);
// If the Tensor is not on the CPU, transfer it.
if (!t.device().is_cpu()) {
t = t.cpu();
}
// Rebuild the output type using elem_ty_val and dim_val. Start
// with the element type corresponding to elem_ty_val.
at::TypePtr out_ty;
if (elem_ty_val == 0) {
out_ty = at::IntType::get();
} else if (elem_ty_val == 1) {
out_ty = at::FloatType::get();
} else if (elem_ty_val == 2) {
out_ty = at::BoolType::get();
} else if (elem_ty_val == 3) {
out_ty = at::ComplexType::get();
} else {
TORCH_CHECK(
false,
"Unsupported element type for tolist; only int, float, complex and bool are supported");
}
// Check that type of the Tensor matches that of the annotation.
// Make an exception for the case in which the annotated type is
// float/complex and the Tensor data type is also float/complex;
// the elements will be casted to double/c10::complex<double>
// later.
TORCH_CHECK(
(out_ty == at::FloatType::get() && t.is_floating_point()) ||
(out_ty == at::ComplexType::get() && t.is_complex()) ||
tryScalarTypeFromJitType(*out_ty) == t.scalar_type(),
"Output annotation element type and runtime tensor element type must match for tolist()");
// Check that the dimension of the Tensor matches that of the
// annotation.
TORCH_CHECK(
dim_val == t.dim(),
"Output annotation list dimension and runtime tensor dimension must match for tolist()");
// Wrap out_ty in a ListType dim times.
for (const auto i : c10::irange(dim_val)) {
(void)i; // Suppress unused variable warning
out_ty = at::ListType::create(out_ty);
}
int64_t dim = t.dim();
auto sizes = t.sizes();
auto strides = t.strides();
size_t element_size = t.element_size();
char* data = static_cast<char*>(t.data_ptr());
auto result = tensorToListRecursive(
data, 0, dim, out_ty, t.scalar_type(), sizes, strides, element_size);
push(stack, std::move(result));
}
void numToTensorScalar(Stack& stack) {
at::Scalar s;
pop(stack, s);
push(stack, c10::scalar_to_tensor(s));
}
void isCuda(Stack& stack) {
at::Tensor a;
pop(stack, a);
push(stack, a.is_cuda());
}
void numToTensorBool(Stack& stack) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool b;
pop(stack, b);
push(stack, c10::scalar_to_tensor(b));
}
void dictIndex(Stack& stack) {
auto key = pop(stack);
auto dict = pop(stack).toGenericDict();
auto value = dict.find(key);
if (value == dict.end()) {
AT_ERROR("KeyError: ", key);
}
push(stack, value->value());
}
static const C10_UNUSED std::array<mobile::prim_op_fn_register, 16> op_reg = {
mobile::prim_op_fn_register("prim::TupleIndex", tupleIndex),
mobile::prim_op_fn_register("aten::Bool.Tensor", boolTensor),
mobile::prim_op_fn_register("aten::format", aten_format),
mobile::prim_op_fn_register("prim::NumToTensor.Scalar", numToTensorScalar),
mobile::prim_op_fn_register(
"prim::RaiseException",
raiseExceptionWithMessage),
mobile::prim_op_fn_register("prim::device", device),
mobile::prim_op_fn_register("prim::dtype", dtype),
mobile::prim_op_fn_register("prim::layout", layout),
mobile::prim_op_fn_register("aten::__not__", _not),
mobile::prim_op_fn_register("aten::__is__", is),
mobile::prim_op_fn_register("aten::__isnot__", isNot),
mobile::prim_op_fn_register("aten::dim", dim),
mobile::prim_op_fn_register("prim::Uninitialized", unInitialized),
mobile::prim_op_fn_register("prim::is_cuda", isCuda),
mobile::prim_op_fn_register("aten::__getitem__.Dict_str", dictIndex),
mobile::prim_op_fn_register("prim::unchecked_cast", noop),
// TODO: (@pavithran) size is overloaded with int[] and Tensor
// so this throws error expecting int not Tensor
// mobile::prim_op_fn_register("aten::size", size)
};
} // namespace jit
} // namespace torch