forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_jit_llga_fuser.py
857 lines (745 loc) · 32 KB
/
test_jit_llga_fuser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
# Owner(s): ["module: mkldnn"]
import sys
import torch
import unittest
import itertools
import torch.nn as nn
from functools import wraps
from concurrent import futures
import torch.nn.functional as F
import torch.fx.experimental.optimization as optimization
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_utils import run_tests, TEST_SCIPY, IS_WINDOWS, IS_MACOS
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
dtypes
)
# We use this wrapper to run UTs of TorchVision models because of a memory-leak
# issue with JIT tracing that causes traced model objects to persist in the
# memory. Ref: https://github.com/pytorch/pytorch/issues/35600
# Memory requirement for running these UTs was thus increasing cumulatively, and
# invoked the Linux kernel OOM killer on linux.2xlarge PyTorch CI runners, which
# only have 16 GB RAM. Cumulatively, these UTs had been using more than 14 GB
# memory (as per psutils). So now we run each TorchVision model UTs in separate processes.
def separate_process(func):
@wraps(func)
def wrapper(*args, **kwargs):
with futures.ProcessPoolExecutor() as executor:
future = executor.submit(func, *args, **kwargs)
futures.wait([future])
return wrapper
def is_avx512_supported():
if sys.platform != 'linux':
return False
with open("/proc/cpuinfo", encoding="ascii") as f:
lines = f.read()
return "avx512" in lines
IS_AVX512_UNSUPPORTED = not is_avx512_supported()
LLGA_FUSION_GROUP = 'prim::oneDNNFusionGroup'
LLGA_NOT_ENABLED = not torch._C.has_mkldnn or IS_WINDOWS or IS_MACOS
def warmup_forward(f, *args, profiling_count=3):
for i in range(profiling_count):
results = f(*args)
return results
class JitLlgaTestCase(JitTestCase):
def setUp(self):
# PyTorch has divergent op support for AMP in JIT & eager modes
# so we disable AMP for JIT & leverage eager-mode AMP.
# Ref: https://github.com/pytorch/pytorch/issues/75956
self.original_autocast_mode = torch._C._jit_set_autocast_mode(False)
torch.jit.enable_onednn_fusion(True)
def tearDown(self):
torch.jit.enable_onednn_fusion(False)
torch._C._jit_set_autocast_mode(self.original_autocast_mode)
def checkTrace(self, m, x, dtype=torch.float32, *args, **kwargs):
if isinstance(m, torch.nn.Module):
m.eval()
with torch.no_grad(), torch._jit_internal._disable_emit_hooks():
if dtype == torch.bfloat16:
# We rely upon eager-mode AMP support for BF16
with torch.cpu.amp.autocast(cache_enabled=False, dtype=torch.bfloat16):
traced = torch.jit.trace(m, x)
if isinstance(m, torch.nn.Module):
traced = torch.jit.freeze(traced)
warmup_forward(traced, *x)
ref_o = m(*x)
fwd_graph = traced.graph_for(*x)
else:
traced = torch.jit.trace(m, x)
if isinstance(m, torch.nn.Module):
traced = torch.jit.freeze(traced)
warmup_forward(traced, *x)
ref_o = m(*x)
fwd_graph = traced.graph_for(*x)
jit_o = traced(*x)
self.assertEqual(jit_o, ref_o)
return traced, fwd_graph
def assertFused(self, graph, fused_patterns):
for pat in fused_patterns:
self.assertGraphContainsExactly(graph, pat, 0)
def findFusionGroups(self, graph):
result = []
for n in graph.nodes():
if n.kind() == LLGA_FUSION_GROUP:
result.append(n.g('Subgraph'))
continue
for block in n.blocks():
result += self.findFusionGroups(block)
return result
def checkPatterns(self, graph, patterns):
fusion_groups = self.findFusionGroups(graph)
assert len(fusion_groups) == len(patterns), "length of subgraphs not equal to length of given patterns"
for i in range(len(fusion_groups)):
for pattern in patterns[i]:
self.assertGraphContains(fusion_groups[i], pattern)
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
except RuntimeError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, 'no torchvision')
def get_eltwise_fn(name):
if hasattr(torch, name):
return getattr(torch, name)
elif hasattr(F, name):
return getattr(F, name)
elif name == 'hardswish_':
return torch.nn.Hardswish(inplace=True)
else:
raise NameError('Eltwise function %s not found' % name)
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestOp(JitLlgaTestCase):
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d(self, dtype):
for [spatial, in_channels, out_channels, kernel, padding, stride, dilation, g, bias] in itertools.product(
[7, 8],
[8, 15],
[7, 16],
[3, 4],
[0, 2],
[1, 2],
[1, 2],
[1, 2],
[True, False]):
m = nn.Conv2d(in_channels=in_channels * g,
out_channels=out_channels * g,
kernel_size=kernel,
padding=padding,
stride=stride,
dilation=dilation,
groups=g,
bias=bias)
x = torch.rand(1, in_channels * g, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_bn2d(self, dtype):
m = nn.BatchNorm2d(32).eval()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created for softmax
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.eltwise = eltwise_fn
def forward(self, x):
return self.eltwise(x)
for eltwise in ['relu', 'gelu']:
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created.
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_max_pool2d(self, dtype):
for [spatial, kernel, padding, stride, dilation, ceil_mode] in itertools.product(
[15, 16, 17, 18, 19],
[4, 5],
[0, 1, 2],
[1, 2], # [1, 2, 4], TODO: fix issue in pad calculation
[1], # [1, 2], TODO: backend support for dilation
[True, False]):
m = nn.MaxPool2d(kernel_size=kernel,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode)
x = torch.rand(1, 4, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_avg_pool2d(self, dtype):
for [spatial, kernel, padding, stride, ceil_mode, count_include_pad] in itertools.product(
[15, 16, 17, 18, 19],
[4, 5],
[0, 1, 2],
[1, 2, 4],
[False], # TODO: oneDNN Graph does not fully support ceil_mode=True
[True, False]):
m = nn.AvgPool2d(kernel_size=kernel,
stride=stride,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad)
x = torch.rand(1, 4, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_variable_kernel_avg_pool2d(self, dtype):
class M(nn.Module):
def forward(self, x):
x = F.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=0, count_include_pad=False)
return x
x = torch.randn(1, 1000, 1, 1)
m = M()
_, graph = self.checkTrace(m, [x], dtype)
# kernel_size is not Constant, shouldn't have any LLGA_FUSION_GROUP
# TODO: with shape specialization, should have 1 LLGA_FUSION_GROUP
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_softmax(self, dtype):
for dim in [-4, -3, -2, -1, 0, 1, 2, 3]:
m = nn.Softmax(dim=dim)
x = torch.rand(8, 12, 12, 12)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created for softmax
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_linear(self, dtype):
for bias in [True, False]:
x = torch.rand(32, 28)
m = torch.nn.Linear(in_features=28, out_features=64, bias=bias)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::linear'])
def _gen_binary_inputs(self, gen_permute=True):
for xshape, yshape in [
[[1, 32, 28, 28], [1, 32, 28, 28]],
[[1, 32, 28, 28], [1, 1, 28, 28]],
[[1, 32, 28, 28], [28]],
[[1, 32, 28, 28], [1]],
]:
yield torch.rand(xshape), torch.rand(yshape)
if gen_permute and xshape != yshape:
yield torch.rand(yshape), torch.rand(xshape)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_add(self, dtype):
def forward_add(x, y):
return torch.add(x, y, alpha=2)
for x, y in self._gen_binary_inputs():
_, graph = self.checkTrace(forward_add, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_add_scalar(self, dtype):
def add_scalar(x):
return 42 + x + 3.14
x = torch.rand(32, 32)
_, graph = self.checkTrace(add_scalar, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_addmm(self, dtype):
# Just a sidenote - comparison of eager-mode & oneDNN Graph JIT outputs of
# addmm (which entails matmul-bias-add fusion) might require higher tolerance
# bounds for BF16. This is subject to change in the near future.
def addmm(x, y, z):
# alpha and beta are 1, by default
return torch.addmm(z, x, y)
x = torch.rand(64, 32)
y = torch.rand(32, 32)
z = torch.rand(64, 32)
_, graph = self.checkTrace(addmm, [x, y, z], dtype)
# single-op partition should be created for matmul with bias.
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_mul(self, dtype):
def forward_mul(x, y):
return torch.mul(x, y) * 3
for x, y in self._gen_binary_inputs():
_, graph = self.checkTrace(forward_mul, [x, y], dtype)
# single-op partitions shouldn't be created
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_identity_binary(self, dtype):
def forward(x):
return x * 1 + 0.0
x = torch.rand(32)
_, graph = self.checkTrace(forward, [x], dtype)
self.assertFused(graph, ['aten::add', 'aten::mul'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_layer_norm(self, dtype):
# TODO: support more normalized_shape
m = torch.nn.LayerNorm(10)
x = torch.randn(2, 5, 10, 10)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_cat(self, dtype):
def cat_along_dim(d):
def forward_cat(*inputs):
return torch.cat(inputs, d)
return forward_cat
for xshape in [
[8, 8, 8, 8],
[64, 8, 32],
[2048, 64],
]:
for d in range(len(xshape)):
x = torch.rand(xshape)
_, graph = self.checkTrace(cat_along_dim(d), [x, x, x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_typecheck(self, dtype):
x = torch.rand(32, 28, dtype=dtype)
m = torch.nn.Linear(in_features=28, out_features=64, bias=True, dtype=dtype)
traced, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::linear'])
# change the shape of the input, we should enter fallback graph
x = torch.rand(5, 28, dtype=dtype)
self.assertEqual(m(x), traced(x))
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestFusionPattern(JitLlgaTestCase):
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=False)
self.eltwise = eltwise_fn
def forward(self, x):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
return x
for eltwise in ['relu', 'leaky_relu', 'sigmoid', 'square',
'abs', 'exp', 'hardswish', 'tanh', 'hardtanh']:
for inplace in [True, False]:
eltwise_fn_name = eltwise + '_' if inplace else eltwise
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype=dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2)
# test if relu_ is replace with relu by mutation removal pass
self.assertFused(graph, ['aten::' + eltwise_fn_name])
# test if relu is fused into the fusion group
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_silu(self, dtype):
class M(nn.Module):
def __init__(self, inplace):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = nn.SiLU(inplace=inplace)
def forward(self, x):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
return x
for inplace in [False, True]:
for memory_format in [torch.contiguous_format, torch.channels_last]:
m = M(inplace)
x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2)
# oneDNN graph does not have silu OP. The bridge will convert silu to sigmoid - mul
# Inplace op will become outplace op on the JIT graph
patterns = [
["aten::_convolution", 'aten::sigmoid', 'aten::mul'],
["aten::_convolution"]
]
silu_op = 'aten::silu_' if inplace else 'aten::silu'
self.assertFused(graph, ['aten::_convolution', silu_op])
self.checkPatterns(graph, patterns)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_ensure_tensor_is_rewrapped(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = eltwise_fn
self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7))
def forward(self, x, y):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
y = self.conv3(y)
y = self.eltwise(y)
y = self.conv4(y)
y = self.eltwise(y)
x = torch.add(x, y)
x = self.adaptive_avg_pool_2d(x)
return x
eltwise_fn_name = 'relu'
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
m = m.to(memory_format=torch.channels_last)
x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
# Simply test if the output is accurate
# The output of the second partition is input to adaptive_avg_pool2d, which is
# unsupported by LLGA. In resnext101 32x16d, we encountered an accuracy issue.
_, graph = self.checkTrace(m, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 4)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_clamp(self, dtype):
class M(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv5 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
def forward(self, x):
x = self.conv1(x)
x = torch.clamp(x, min=float('-inf'))
x = self.conv2(x)
x = torch.clamp(x, min=-5)
x = self.conv3(x)
x = torch.clamp(x, min=0, max=float('inf'))
x = self.conv4(x)
x = torch.clamp(x, min=1, max=5)
x = self.conv5(x)
x = torch.clamp(x, max=2)
return x
for inplace in [False, True]:
for memory_format in [torch.contiguous_format, torch.channels_last]:
x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format)
m = M()
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 5)
self.assertFused(graph, ['aten::_convolution', "aten::clamp"])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_bn(self, dtype):
class M(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(32)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
return x
m = M().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_bn_relu(self, dtype):
class M(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(32)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
return x
m = M().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm',
'aten::relu'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_bn2d_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.eltwise = eltwise_fn
self.bn = nn.BatchNorm2d(32)
def forward(self, x):
x = self.bn(x)
x = self.eltwise(x)
return x
for eltwise in ['relu']:
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn).eval()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_linear_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn, bias):
super().__init__()
self.linear = nn.Linear(28, 64, bias)
self.eltwise = eltwise_fn
def forward(self, x):
x = self.linear(x)
x = self.eltwise(x)
return x
for [has_bias, eltwise] in itertools.product(
[True, False],
['relu', 'gelu', 'sigmoid', 'hardtanh', 'relu6', 'elu']):
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn, has_bias)
x = torch.rand(32, 28, requires_grad=False)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_sum(self, dtype):
class M(nn.Module):
def __init__(self, bias=False):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn2 = nn.BatchNorm2d(32)
self.relu = nn.ReLU()
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn3 = nn.BatchNorm2d(32)
def forward(self, x, y):
x = self.conv1(x)
x = self.bn1(x)
y = self.conv2(y)
y = self.bn2(y)
z = self.relu(x + y)
z = self.conv3(z)
z = self.bn3(z)
return z
for bias in [True, False]:
m = M(bias).eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 16, 16, requires_grad=False)
y = torch.rand(1, 32, 16, 16, requires_grad=False)
_, graph = self.checkTrace(m, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 3)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_wildcard(self, dtype):
class M(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
y = self.eltwise(x)
return [x, y]
# The pattern is as the following:
# conv
# | \
# eltwise \
# | \
# ListConstruct
#
# The output of conv is used by a wildcard op: ListConstruct.
# Thus conv-eltwise cannot be selected into the same Partition.
m = M()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# conv can exist in a single-op oneDNN Graph partition but not relu
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution'])
@onlyCPU
@dtypes(torch.int32)
def test_wildcard_unsupported_dtype(self, dtype):
class M(nn.Module):
def forward(self, x):
y = x // 2
return y
# In shufflenet_v2_x1_0, channels_per_groups is computed as:
# channels_per_group = num_channels // groups
# JIT IR converts groups to Long dtype, which is unsupported
# by oneDNN Graph, viz. Long(requires_grad=0, device=cpu) = prim::Constant[value={2}]()
# This test just ensures that the bridge code can handle
# unsupported dtypes for inputs to ops unsupported
# by oneDNN Graph. In this particular UT, aten::floor_divide
# would be added as a wildcard in graph-construction stage.
m = M()
x = torch.tensor([32], dtype=dtype)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_rewrap_tensor_input_to_pytorch(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = eltwise_fn
self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7))
def forward(self, x, y):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
x = torch.add(x, y)
x = self.adaptive_avg_pool_2d(x)
return x
eltwise_fn_name = 'relu'
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
m = m.to(memory_format=torch.channels_last)
x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
# Simply test if the output is accurate
# The output of the second partition is input to adaptive_avg_pool2d, which is
# unsupported by LLGA, so it must be handled by PyTorch, which should receive
# correct strides info of the channels-last tensor.
graph, _ = self.checkTrace(m, [x, y], dtype)
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestEnableDisableLlgaFuser(JitTestCase):
def setUp(self):
super().setUp()
self.is_enabled = torch._C._jit_set_llga_enabled(False)
def tearDown(self):
torch._C._jit_set_llga_enabled(self.is_enabled)
super().tearDown()
def test_context_manager(self):
x = torch.randn(4, 8)
y = torch.randn(4, 8)
with torch.jit.fuser('fuser3'):
with torch.jit.fuser('fuser3'):
def t1(x, y):
o = x + y
o = o + 2.0
return o
t_jit = torch.jit.script(t1)
t_jit(x, y)
t_jit(x, y)
self.assertGraphContains(t_jit.graph_for(x, y), LLGA_FUSION_GROUP)
def t2(x, y):
o = x + y
o = o + 3.0
return o
t_jit_2 = torch.jit.script(t2)
t_jit_2(x, y)
t_jit_2(x, y)
self.assertGraphContains(t_jit_2.graph_for(x, y), LLGA_FUSION_GROUP)
def t3(x, y):
o = x + y
o = o + 4.0
return o
t_jit_3 = torch.jit.script(t3)
t_jit_3(x, y)
t_jit_3(x, y)
self.assertGraphContainsExactly(t_jit_3.graph_for(x, y), LLGA_FUSION_GROUP, 0)
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
@unittest.skip("Enable when integration with dynamo aot_autograd is more stable")
class TestDynamoAOT(JitTestCase):
def test_dynamo_aot_ts_onednn(self):
class Seq(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(10, 10),
nn.ReLU(),
nn.Linear(10, 10),
nn.ReLU(),
)
def forward(self, x):
return self.layers(x)
mod = Seq()
import torch._dynamo
aot_mod = torch._dynamo.optimize("aot_ts", nopython=True)(mod)
for _ in range(10):
with torch.jit.fuser("fuser3"):
loss = aot_mod(torch.rand([10, 10])).sum()
loss.backward()
torch._dynamo.reset()
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestModel(JitLlgaTestCase):
@skipIfNoTorchVision
def _test_vision(self, model_name, dtype):
m = getattr(torchvision.models, model_name)().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 3, 224, 224) / 10
_, graph = self.checkTrace(m, [x], dtype)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm',
'aten::relu', 'aten::linear',
'aten::avg_pool2d', 'aten::max_pool2d'])
for model_name, enabled in [
['resnet50', True],
['resnext50_32x4d', True],
['resnext101_32x8d', True],
['densenet121', True],
['densenet161', True],
['densenet169', True],
['densenet201', True],
['efficientnet_b0', True],
['efficientnet_b1', True],
['efficientnet_b2', True],
['efficientnet_b3', True],
['efficientnet_b4', True],
['efficientnet_b5', True],
['efficientnet_b6', True],
['efficientnet_b7', True],
['regnet_y_400mf', True],
['googlenet', TEST_SCIPY],
['mobilenet_v2', True],
['mobilenet_v3_large', True],
['mnasnet1_0', True],
['squeezenet1_0', True],
['vgg16', True],
['alexnet', True],
['shufflenet_v2_x1_0', True],
['wide_resnet50_2', True],
]:
def _wrapper(mname, dtype):
@unittest.skipIf(not enabled, 'Disabled')
@separate_process
def test(self, dtype=dtype):
return self._test_vision(mname, dtype)
return test
for dtype in [torch.bfloat16, torch.float32]:
setattr(TestModel, 'test_vision_%s_%s' % (model_name, str(dtype).split("torch.")[1]), _wrapper(model_name, dtype))
instantiate_device_type_tests(TestFusionPattern, globals())
instantiate_device_type_tests(TestOp, globals())
if __name__ == '__main__':
run_tests()