forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_fx_experimental.py
1651 lines (1412 loc) · 60.5 KB
/
test_fx_experimental.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: fx"]
import math
import numbers
import operator
import pickle
import sys
import tempfile
import unittest
from types import BuiltinFunctionType
from typing import Callable, Dict, List, NamedTuple, Optional, Tuple, Union
import torch
import torch.fx.experimental.meta_tracer
import torch.fx.experimental.optimization as optimization
from torch.fx._symbolic_trace import symbolic_trace
from torch.fx.experimental import merge_matmul
from torch.fx.experimental.accelerator_partitioner import Partitioner
from torch.fx.experimental.normalize import NormalizeArgs, NormalizeOperators
from torch.fx.experimental.partitioner_utils import (
Device,
get_latency_of_partitioned_graph,
get_partition_to_latency_mapping,
NodeLatency,
PartitionerConfig,
PartitionMode,
)
from torch.fx.experimental.rewriter import RewritingTracer
from torch.fx.experimental.schema_type_annotation import AnnotateTypesWithSchema
from torch.fx.graph_module import GraphModule
from torch.fx.node import Node
from torch.fx.operator_schemas import (
_torchscript_type_to_python_type,
create_type_hint,
normalize_function,
normalize_module,
type_matches,
)
from torch.fx.passes import graph_manipulation
from torch.fx.passes.param_fetch import lift_lowering_attrs_to_nodes
from torch.fx.passes.shape_prop import ShapeProp
from torch.fx.passes.split_module import split_module
from torch.fx.passes.annotate_getitem_nodes import annotate_getitem_nodes
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
ops,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_nn import module_tests, new_module_tests
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.jit_utils import JitTestCase
try:
import torchvision.models
from torchvision.models import resnet18
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
skipIfNoMkldnn = unittest.skipIf(
not (torch.backends.mkldnn.enabled and torch.backends.mkldnn.is_available()),
"no MKLDNN",
)
def symbolic_trace_with_rewrite(root: Union[torch.nn.Module, Callable]) -> GraphModule:
return GraphModule(
root if isinstance(root, torch.nn.Module) else torch.nn.Module(),
RewritingTracer().trace(root),
)
class TestFXExperimental(JitTestCase):
def test_find_single_partition(self):
class TestModule(torch.nn.Module):
def forward(self, a, b):
return a + b
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(1)
b = torch.rand(1)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [
Device("dev_0", 125, 0),
Device("dev_1", 150, 1),
Device("dev_2", 125, 2),
]
partitioner_config = PartitionerConfig(devices)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a, b), module_with_submodules(a, b))
assert dag.nodes[0].logical_device_ids == [1]
def test_lack_of_devices(self):
class TestModule(torch.nn.Module):
def forward(self, a, b):
return a + b
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
b = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [Device("dev_0", 4, 0), Device("dev_1", 4, 1)]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
catch_runtime_error = False
try:
ret = partitioner.partition_graph(traced, m, partitioner_config)
except RuntimeError:
catch_runtime_error = True
assert catch_runtime_error
def test_large_node_error(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
linear = self.linear(a)
add = linear + a
return add
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
partitioner = Partitioner()
devices = [
Device("dev_0", 40, 0),
Device("dev_1", 40, 0),
Device("dev_2", 40, 0),
Device("dev_3", 40, 0),
Device("dev_4", 40, 0),
]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
catch_runtime_error = False
try:
ret = partitioner.partition_graph(traced, m, partitioner_config)
except RuntimeError:
catch_runtime_error = True
assert catch_runtime_error
def test_partition_node_manipulation(self):
class TestModule(torch.nn.Module):
def forward(self, a, b):
add_1 = a + b
add_2 = add_1 + torch.rand(4)
add_3 = add_2 + torch.rand(4)
return add_3
m = TestModule()
traced = symbolic_trace(m)
a, b = torch.rand(4), torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [Device("dev_0", 1000, 0)]
partitioner_config = PartitionerConfig(devices)
ret = partitioner.partition_graph(traced, m, partitioner_config)
partition = partitioner.partitions[0]
assert partition.used_mem_bytes == 112
# Select add_2 node to remove
selected_node = None
for node in partition.nodes:
if node.name == "add_2":
selected_node = node
partition.remove_node(selected_node)
assert partition.used_mem_bytes == 80
def test_size_based_partition(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
self.c = torch.rand(4)
def forward(self, a, b):
add_1 = a + b
linear = self.linear(add_1)
add_2 = linear + self.c
return add_2
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
b = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [
Device("dev_0", 125, 0),
Device("dev_1", 125, 1),
Device("dev_2", 125, 2),
]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a, b), module_with_submodules(a, b))
for i, node in enumerate(dag.nodes):
assert node.logical_device_ids == [i]
def test_partition_device_mapping(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
b = torch.rand(4)
add_1 = a + b
linear_1 = self.linear(add_1)
add_2 = torch.rand(4) + a
add_3 = add_2 + linear_1
return add_3
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
partitioner = Partitioner()
devices = [Device("dev_0", 120, 0), Device("dev_1", 160, 1)]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a), module_with_submodules(a))
for i, node in enumerate(dag.nodes):
if i == 1:
assert node.logical_device_ids == [1]
else:
assert node.logical_device_ids == [0]
def test_sparse_nn_partition(self):
class MyRecommendationModule(torch.nn.Module):
def create_mlp(self, num_of_layers: int, input_size: int, output_size: int):
layers = torch.nn.ModuleList()
for _ in range(num_of_layers):
ll = torch.nn.Linear(input_size, output_size)
layers.append(ll)
layers.append(torch.nn.ReLU())
return layers
def __init__(self):
super().__init__()
layers = self.create_mlp(4, 4, 4)
self.bottom_layers = torch.nn.Sequential(*layers)
layers = self.create_mlp(3, 24, 24)
self.top_layers = torch.nn.Sequential(*layers)
self.embedding_layers = torch.nn.ModuleList()
el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True)
self.embedding_layers.append(el)
for i in range(3):
el = torch.nn.EmbeddingBag(1000000, 4, mode="sum", sparse=True)
self.embedding_layers.append(el)
el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True)
self.embedding_layers.append(el)
def forward(self, a, b, offset):
x = self.bottom_layers(a)
y = []
c = []
for i in range(len(self.embedding_layers)):
temp = torch.randint(10, (8,))
c.append(temp + b)
for i in range(len(self.embedding_layers)):
if i % 2 == 0:
y.append(self.embedding_layers[i](c[i], offset))
else:
y.append(
self.embedding_layers[i](torch.randint(10, (8,)), offset)
)
z = torch.cat([x] + y, dim=1)
p = self.top_layers(z)
return p
m = MyRecommendationModule()
a = torch.rand(2, 4)
b = torch.randint(10, (8,))
offset = torch.randint(1, (2,))
traced = symbolic_trace(m)
graph_manipulation.get_size_of_all_nodes(traced, [a, b, offset])
devices = [
Device("dev_0", 33000000, 0),
Device("dev_1", 33000000, 1),
Device("dev_2", 33000000, 2),
]
partitioner_config = PartitionerConfig(devices, PartitionMode.sparse_nn)
partitioner = Partitioner()
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a, b, offset), module_with_submodules(a, b, offset))
assert len(module_with_submodules.graph.nodes) == 24
def test_partition_latency(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
add_1 = a + torch.rand(4)
add_2 = add_1 + torch.rand(4)
linear_1 = self.linear(add_1)
add_3 = add_2 + linear_1
add_4 = add_2 + add_3
return add_4
def get_node_to_latency_mapping(fx_module: GraphModule):
"""Given a fx module, generate node latency for each node
based on the size of each node
"""
node_to_latency_mapping: Dict[Node, NodeLatency] = {}
for node in fx_module.graph.nodes:
if node.op not in {"output", "placeholder", "get_attr"}:
if node.size_bytes.total_size == node.size_bytes.output_size:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, 2.0 * node.size_bytes.total_size
)
else:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, node.size_bytes.output_size
)
return node_to_latency_mapping
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
node_to_latency_mapping = get_node_to_latency_mapping(traced)
devices = [Device("dev_0", 200, 0), Device("dev_1", 200, 1)]
partitioner = Partitioner()
partitioner_config = PartitionerConfig(devices)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
self.assertEqual(traced(a), module_with_submodules(a))
partitions = partitioner.partitions
partition_to_latency_mapping = get_partition_to_latency_mapping(
partitions, node_to_latency_mapping
)
for p in partition_to_latency_mapping:
if p.partition_id == 0:
assert partition_to_latency_mapping[p] == (128.0, 80.0, 160.0)
else:
assert partition_to_latency_mapping[p] == (16.0, 32.0, 32.0)
transfer_rate_bytes_per_sec = 2
critical_path_latency_sec = get_latency_of_partitioned_graph(
partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec
)
assert critical_path_latency_sec == 208.0
def test_cost_aware_partition(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
add_1 = a + torch.rand(4)
add_2 = add_1 + torch.rand(4)
linear_1 = self.linear(add_1)
add_3 = add_2 + torch.rand(4)
add_4 = add_2 + linear_1
add_5 = add_3 + add_4
return add_5
def get_node_to_latency_mapping(fx_module: GraphModule):
node_to_latency_mapping: Dict[Node, NodeLatency] = {}
for node in fx_module.graph.nodes:
if node.op not in {"output", "placeholder", "get_attr"}:
if node.size_bytes.total_size == node.size_bytes.output_size:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, 1
)
else:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, node.size_bytes.output_size
)
return node_to_latency_mapping
m = MyModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
devices = [
Device("dev_0", 125, 0),
Device("dev_1", 125, 1),
Device("dev_2", 125, 2),
Device("dev_3", 125, 3),
]
node_to_latency_mapping = get_node_to_latency_mapping(traced)
partitioner_config = PartitionerConfig(
devices,
mode=PartitionMode.cost_aware,
transfer_rate_bytes_per_sec=2,
node_to_latency_mapping=node_to_latency_mapping,
)
partitioner = Partitioner()
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a), module_with_submodules(a))
partitions = partitioner.partitions
partition_to_latency_mapping = get_partition_to_latency_mapping(
partitions, node_to_latency_mapping
)
critical_path_latency_sec = get_latency_of_partitioned_graph(
partitions,
partition_to_latency_mapping,
partitioner_config.transfer_rate_bytes_per_sec,
)
assert critical_path_latency_sec == 160.0
def test_aot_based_partition(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.b = torch.rand(4)
self.c = torch.rand(4)
def forward(self, a):
add_1 = a + self.b
add_2 = self.c + add_1
return add_2
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
node_to_partition_id = {}
partition_to_logical_devices = {}
count = 0
graph_manipulation.get_size_of_all_nodes(traced, [a])
for node in traced.graph.nodes:
if node.op not in {"placeholder", "get_attr", "output"}:
node_to_partition_id[node] = count
partition_to_logical_devices[count] = [0]
count += 1
devices = [Device("dev_0", 200, 0)]
partitioner_config = PartitionerConfig(
devices=devices,
mode=PartitionMode.aot_based,
node_to_partition_mapping=node_to_partition_id,
partition_to_logical_device_mapping=partition_to_logical_devices,
)
partitioner = Partitioner()
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(module_with_submodules(a), traced(a))
for node in dag.nodes:
assert node.size_bytes == 48
assert node.logical_device_ids == [0]
def test_replace_target_nodes_with(self):
class testModule(torch.nn.Module):
def forward(self, a, b):
return a + b
m = testModule()
traced = symbolic_trace(m)
input1 = torch.randn(1)
input2 = torch.randn(1)
assert (input1 + input2) == traced(input1, input2)
graph_manipulation.replace_target_nodes_with(
fx_module=traced,
old_op="call_function",
old_target=operator.add,
new_op="call_function",
new_target=operator.mul,
)
assert (input1 * input2) == traced(input1, input2)
def test_saturate_host(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
add_1 = a + torch.rand(4)
add_2 = add_1 + torch.rand(4)
linear_1 = self.linear(add_1)
add_3 = add_2 + linear_1
add_4 = add_2 + add_3
return add_4
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
devices = [
Device("dev_0", 200, 0),
Device("dev_1", 200, 1),
Device("dev_2", 100, 2),
Device("dev_3", 100, 3),
Device("dev_4", 200, 4),
Device("dev_5", 100, 5),
]
partitioner = Partitioner()
# Without host saturation, the model will be split into two partitions.
# dev_0 holds partition 0 of 192 bytes and dev_1 holds partition 1 of 48 bytes.
partitioner_config = PartitionerConfig(devices, saturate_host=True)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
self.assertEqual(traced(a), module_with_submodules(a))
partitions = partitioner.partitions
self.assertEqual(len(partitions), 2)
# With host saturation, partition 1 will be replicated to dev_4, and partition 2
# will be replicated to dev_2.
self.assertEqual(partitions[0].logical_device_ids, [0, 4])
self.assertEqual(partitions[1].logical_device_ids, [1, 2])
@skipIfNoTorchVision
def test_conv_bn_fusion(self):
rn18 = resnet18().eval()
traced = symbolic_trace(rn18)
fused = optimization.fuse(traced)
self.assertTrue(
all(not isinstance(m, torch.nn.BatchNorm2d) for m in fused.modules())
)
N, C, H, W = 20, 3, 224, 224
inp = torch.randn(N, C, H, W)
self.assertEqual(fused(inp), rn18(inp))
def test_conv_bn_fusion_not_running_state(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(32, 64, 3, stride=2)
self.bn = torch.nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
model = M().eval()
traced = symbolic_trace(model)
fused = optimization.fuse(traced)
inp = torch.randn([1, 32, 50, 50])
# bn need not be folded in conv
self.assertTrue(
any(isinstance(m, torch.nn.BatchNorm2d) for m in fused.modules())
)
self.assertEqual(fused(inp), model(inp))
def test_call_to_assert_no_msg(self):
class M(torch.nn.Module):
def forward(self, a, b):
assert a == b
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
traced(3, 3)
with self.assertRaisesRegex(AssertionError, ""):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_meta_tracer(self):
class MetaTracerTestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.Embedding(num_embeddings=42, embedding_dim=16)
self.layernorm = torch.nn.LayerNorm(16)
def forward(self, x):
emb = self.emb(x)
emb = emb + torch.arange(emb.shape[-1], dtype=torch.float, device=emb.device)
lol = self.layernorm(emb)
return torch.relu(lol) if lol.shape[0] < 30 else torch.sigmoid(lol)
mttm = MetaTracerTestModule()
for BS in [15, 35]:
x = torch.zeros(BS, dtype=torch.long).random_(42)
meta_args = {'x' : x.to(device='meta')}
gm = torch.fx.experimental.meta_tracer.symbolic_trace(mttm, meta_args=meta_args)
torch.testing.assert_close(gm(x), mttm(x))
# Test serialization/deserialization
with tempfile.TemporaryDirectory() as tmp_dir:
with open(f'{tmp_dir}/meta_module.pkl', 'wb') as f:
pickle.dump(gm, f)
with open(f'{tmp_dir}/meta_module.pkl', 'rb') as f:
loaded = pickle.load(f)
torch.testing.assert_close(loaded(x), mttm(x))
def test_call_to_assert_with_msg(self):
class M(torch.nn.Module):
def forward(self, a, b):
assert a == b, "test message"
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
traced(3, 3)
with self.assertRaisesRegex(AssertionError, "test message"):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_call_to_assert_with_empty_msg(self):
class M(torch.nn.Module):
def forward(self, a, b):
assert a == b, ""
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
traced(3, 3)
with self.assertRaisesRegex(AssertionError, ""):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_call_to_assert_with_multiline_message(self):
class M(torch.nn.Module):
def forward(self, a, b):
error_msg = """
An error message with
terrible spacing
"""
assert a == b, error_msg
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
error_msg = """
An error message with
terrible spacing
"""
traced(3, 3)
with self.assertRaisesRegex(AssertionError, error_msg):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_subgraph_creation(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.param = torch.nn.Parameter(torch.rand(3, 4))
self.linear = torch.nn.Linear(4, 5)
def forward(self, x, y):
z = self.linear(x + self.param).clamp(min=0.0, max=1.0)
w = self.linear(y).clamp(min=0.0, max=1.0)
return z + w
# symbolically trace model
my_module = MyModule()
my_module_traced = symbolic_trace(my_module)
# random mod partitioning
partition_counter = 0
NPARTITIONS = 3
# Add some random meta info to make sure it is kept around.
for node in my_module_traced.graph.nodes:
if node.op != "output":
node.meta["test_meta_info"] = True
def mod_partition(node: Node):
nonlocal partition_counter
partition = partition_counter % NPARTITIONS
partition_counter = (partition_counter + 1) % NPARTITIONS
return partition
# split module in module with submodules
module_with_submodules = split_module(
my_module_traced, my_module, mod_partition
)
# Check that test_meta_info was still on all nodes.
submodules = dict(module_with_submodules.named_modules())
for node in module_with_submodules.graph.nodes:
if node.op == "call_module":
submod = submodules[node.target]
self.assertTrue(isinstance(submod, torch.fx.GraphModule))
for submod_node in submod.graph.nodes:
if submod_node.op != "output":
stored_op = submod_node.meta.get("test_meta_info")
self.assertTrue(stored_op is not None and stored_op)
x = torch.rand(3, 4)
y = torch.rand(3, 4)
orig_out = my_module_traced(x, y)
submodules_out = module_with_submodules(x, y)
self.assertEqual(orig_out, submodules_out)
def test_split_module_kwargs_expansion(self):
class ModuleWithKwargsExpansion(torch.nn.Module):
def forward(self, x, **kwargs):
return x + kwargs['foo']
mod = ModuleWithKwargsExpansion()
traced = torch.fx.symbolic_trace(mod)
seen_getitem = False
def split_callback(n):
nonlocal seen_getitem
split_idx = int(seen_getitem)
if n.target == operator.getitem:
seen_getitem = True
return split_idx
split = split_module(traced, mod, split_callback)
x = torch.randn(5, 3)
foo = torch.randn(5, 3)
torch.testing.assert_close(split(x, foo=foo), traced(x, foo=foo))
@skipIfNoTorchVision
def test_subgraph_trivial_resnet(self):
# Smoke test trivially splitting resnet into 1 partition works
# There was an issue before causing submodule names to be aliased
m = resnet18()
traced = symbolic_trace(m)
a = torch.rand(64, 3, 7, 7)
module_with_submodules = split_module(traced, m, lambda node: 0)
module_with_submodules(a)
def test_split_module_default_arg(self):
class ModelToTrace(torch.nn.Module):
def __init__(self):
super().__init__()
self.lin = torch.nn.Linear(512, 512)
def forward(self, x, targets=None):
x = self.lin(x)
if targets is not None:
x = x + targets
return x
mtt = ModelToTrace()
traced = torch.fx.symbolic_trace(mtt, concrete_args={'targets': None})
split = split_module(traced, mtt, lambda node: 0)
x = torch.randn(50, 512)
torch.testing.assert_close(split(x), traced(x))
def test_normalize_binary_operators(self):
ops_to_test = {
torch.add,
torch.mul,
torch.sub,
torch.div,
torch.floor_divide,
torch.remainder,
torch.eq,
torch.ne,
torch.lt,
torch.le,
torch.gt,
torch.ge,
}
# Test Tensor/Tensor callsite
for op in ops_to_test:
class WrapperMod(torch.nn.Module):
def forward(self, x, y):
return op(x, y)
traced = symbolic_trace(WrapperMod())
normalized = NormalizeOperators(traced).transform()
x, y = torch.randn(3, 4), torch.randn(3, 4)
torch.testing.assert_close(traced(x, y), normalized(x, y))
self.assertFalse(
any(n.target in ops_to_test for n in normalized.graph.nodes)
)
# Test Tensor/scalar callsite
for op in ops_to_test:
class WrapperMod(torch.nn.Module):
def forward(self, x):
return op(x, 42)
traced = symbolic_trace(WrapperMod())
normalized = NormalizeOperators(traced).transform()
x = torch.randn(3, 4)
torch.testing.assert_close(traced(x), normalized(x))
self.assertFalse(
any(n.target in ops_to_test for n in normalized.graph.nodes)
)
@skipIfNoTorchVision
def test_normalize_args(self):
m = resnet18()
class FunctionalTracer(torch.fx.Tracer):
def is_leaf_module(
self, m: torch.nn.Module, module_qualified_name: str
) -> bool:
# `leaves` contains the set of standard `nn.Modules` that are not
# currently symbolically traceable. Ideally this set would be empty
leaves = {torch.nn.BatchNorm2d}
return type(m) in leaves
traced = torch.fx.GraphModule(m, FunctionalTracer().trace(m))
input = torch.randn(5, 3, 224, 224)
ref_outs = traced(input)
ShapeProp(traced).propagate(input)
traced = NormalizeArgs(traced).transform()
modules = dict(traced.named_modules())
for node in traced.graph.nodes:
if node.op == "call_function" and node.target != operator.add:
self.assertEqual(len(node.args), 0)
elif node.op == "call_module":
submod_class = modules[node.target].__class__
nn_class = getattr(torch.nn, submod_class.__name__)
if submod_class == nn_class:
self.assertEqual(len(node.args), 0)
traced(input)
self.assertEqual(traced(input), ref_outs)
def test_normalize_modules_exhaustive(self):
"""
Exhaustively test `Node.normalized_arguments` on all standard
torch.nn Module classes
"""
for test_params in module_tests + new_module_tests:
if "constructor" not in test_params:
constructor = getattr(torch.nn, test_params["module_name"])
else:
constructor = test_params["constructor"]
if "constructor_args" not in test_params:
args = ()
else:
args = test_params["constructor_args"]
mod = constructor(*args)
# Skip modules that are not standard `torch.nn`
# instances, including functionals. (functionals
# are tested in test_normalize_args)
if mod.__class__.__name__ not in dir(torch.nn):
continue
if "input_fn" not in test_params:
inputs = torch.randn(test_params["input_size"])
else:
inputs = test_params["input_fn"]()
if not isinstance(inputs, (tuple, list)):
inputs = (inputs,)
params = ", ".join(f"v{i}" for i in range(len(inputs)))
# Generate a class to wrap this standard `nn.Module` instance
test_classname = f"Test{mod.__class__.__name__}"
test_mod_code = f"""
class {test_classname}(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
def forward(self, {params}):
return self.mod({params})
"""
gbls = {"torch": torch}
exec(test_mod_code, gbls)
test_instance = gbls[test_classname](mod)
traced = symbolic_trace(test_instance)
# Use `Node.normalized_arguments` to get a new set of arguments
# to feed to the Module. Then, rewrite the node to only take
# in those arguments as kwargs
modules = dict(traced.named_modules())
for node in traced.graph.nodes:
if node.op == "call_module":
submod_class = modules[node.target].__class__
nn_class = getattr(torch.nn, submod_class.__name__)
if submod_class == nn_class:
normalized_args = node.normalized_arguments(traced)
normalized_args2 = normalize_module(
traced, node.target, node.args, node.kwargs
)
assert normalized_args == normalized_args2
assert normalized_args
node.args = normalized_args.args
node.kwargs = normalized_args.kwargs
traced.recompile()
# These Modules have an RNG in their forward, so testing
# correctness by comparing outputs is not correct. Skip that
# check for these
stochastic_modules = {"FractionalMaxPool2d", "FractionalMaxPool3d", "RReLU"}
if mod.__class__.__name__ not in stochastic_modules:
self.assertEqual(traced(*inputs), mod(*inputs))
traced = NormalizeArgs(symbolic_trace(test_instance)).transform()
modules = dict(traced.named_modules())
for node in traced.graph.nodes:
if node.op == "call_module":
submod_class = modules[node.target].__class__
nn_class = getattr(torch.nn, submod_class.__name__)
if submod_class == nn_class:
self.assertEqual(len(node.args), 0)
def test_normalize_args_preserve_meta(self):
class MyModule(torch.nn.Module):
def forward(self, a):
return torch.add(a, 3)
m = MyModule()
traced = symbolic_trace(m)
for node in traced.graph.nodes:
if node.op == "call_function" and node.target == torch.add:
node.meta["my_key"] = 7
break
else: