forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActivationPreluKernel.cu
48 lines (39 loc) · 1.43 KB
/
ActivationPreluKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#define TORCH_ASSERT_NO_OPERATORS
#define _USE_MATH_DEFINES
#include <ATen/native/Activation.h>
#include <cmath>
#include <thrust/tuple.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/core/TensorBase.h>
#include <c10/core/Scalar.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <ATen/cuda/ApplyGridUtils.cuh>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/native/cuda/Loops.cuh>
namespace at::native {
// -----------------------------------
// prelu
// -----------------------------------
void prelu_kernel(TensorIterator &iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "prelu_cuda", [&] {
gpu_kernel(iter,
[] GPU_LAMBDA (scalar_t input, scalar_t weight) -> scalar_t {
return (input > 0) ? input : weight * input;
});
});
}
void prelu_backward_kernel(TensorIterator &iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "prelu_backward_cuda", [&] {
gpu_kernel_multiple_outputs(iter,
[] GPU_LAMBDA (scalar_t input, scalar_t weight, scalar_t grad) -> thrust::tuple<scalar_t, scalar_t> {
auto mask = input > 0;
auto grad_input = mask ? grad : weight * grad;
auto grad_weight = mask ? scalar_t{0} : input * grad;
return {grad_input, grad_weight};
});
});
}
REGISTER_DISPATCH(prelu_stub, &prelu_kernel);
REGISTER_DISPATCH(prelu_backward_stub, &prelu_backward_kernel);
} // namespace at::native