From 94e86d0d2e581cfb29c3226857fe86bc371b30ca Mon Sep 17 00:00:00 2001 From: henrique-borba Date: Tue, 9 Jul 2024 11:41:37 +0000 Subject: [PATCH] deploy: b45aa03dd1b4bf3d614dae25abb59bd2b2e18157 --- 404.html | 8 ++++---- CNAME | 1 - api/category/arithmetics/index.html | 8 ++++---- api/category/devices-functions/index.html | 8 ++++---- api/category/exponents-and-logarithms/index.html | 8 ++++---- api/category/extrema-finding/index.html | 8 ++++---- api/category/hyperbolic/index.html | 8 ++++---- api/category/image-processing/index.html | 8 ++++---- api/category/initializers/index.html | 8 ++++---- api/category/linear-algebra/index.html | 8 ++++---- api/category/logic-functions/index.html | 8 ++++---- api/category/low-level-debug/index.html | 8 ++++---- api/category/manipulation/index.html | 8 ++++---- api/category/math/index.html | 8 ++++---- api/category/miscellaneous/index.html | 8 ++++---- api/category/random/index.html | 8 ++++---- api/category/rounding/index.html | 8 ++++---- api/category/signal-processing/index.html | 8 ++++---- api/category/statistics/index.html | 8 ++++---- api/category/sums-products-differences/index.html | 8 ++++---- api/category/trigonometric/index.html | 8 ++++---- api/devices-functions/ndarray-cpu/index.html | 8 ++++---- api/devices-functions/ndarray-gpu/index.html | 8 ++++---- api/devices-functions/ndarray-isgpu/index.html | 8 ++++---- api/devices-functions/ndarray-setdevice/index.html | 8 ++++---- api/image-support/ndarray-toimage/index.html | 8 ++++---- api/initializers/ndarray-arange/index.html | 8 ++++---- api/initializers/ndarray-array/index.html | 8 ++++---- api/initializers/ndarray-identity/index.html | 8 ++++---- api/initializers/ndarray-ones/index.html | 8 ++++---- api/initializers/ndarray-zeros/index.html | 8 ++++---- api/intro/index.html | 8 ++++---- api/linear-algebra/ndarray-cholesky/index.html | 8 ++++---- api/linear-algebra/ndarray-cond/index.html | 8 ++++---- api/linear-algebra/ndarray-det/index.html | 8 ++++---- api/linear-algebra/ndarray-dot/index.html | 8 ++++---- api/linear-algebra/ndarray-eig/index.html | 8 ++++---- api/linear-algebra/ndarray-inner/index.html | 8 ++++---- api/linear-algebra/ndarray-inv/index.html | 8 ++++---- api/linear-algebra/ndarray-lstsq/index.html | 8 ++++---- api/linear-algebra/ndarray-lu/index.html | 8 ++++---- api/linear-algebra/ndarray-matmul/index.html | 8 ++++---- api/linear-algebra/ndarray-matrixrank/index.html | 8 ++++---- api/linear-algebra/ndarray-norm/index.html | 8 ++++---- api/linear-algebra/ndarray-outer/index.html | 8 ++++---- api/linear-algebra/ndarray-qr/index.html | 8 ++++---- api/linear-algebra/ndarray-solve/index.html | 8 ++++---- api/linear-algebra/ndarray-svd/index.html | 8 ++++---- api/linear-algebra/ndarray-trace/index.html | 8 ++++---- api/logic/ndarray-all/index.html | 8 ++++---- api/logic/ndarray-allclose/index.html | 8 ++++---- api/logic/ndarray-equal/index.html | 8 ++++---- api/logic/ndarray-greater/index.html | 8 ++++---- api/logic/ndarray-greater_equal/index.html | 8 ++++---- api/logic/ndarray-less/index.html | 8 ++++---- api/logic/ndarray-less_equal/index.html | 8 ++++---- api/logic/ndarray-not_equal/index.html | 8 ++++---- api/low-level-debug/ndarray-dump/index.html | 8 ++++---- api/low-level-debug/ndarray-dumpDevices/index.html | 8 ++++---- api/manipulation/ndarray-atleast_1d/index.html | 8 ++++---- api/manipulation/ndarray-atleast_2d/index.html | 8 ++++---- api/manipulation/ndarray-atleast_3d/index.html | 8 ++++---- api/manipulation/ndarray-copy/index.html | 8 ++++---- api/manipulation/ndarray-expand_dims/index.html | 8 ++++---- api/manipulation/ndarray-flat/index.html | 8 ++++---- api/manipulation/ndarray-reshape/index.html | 8 ++++---- api/manipulation/ndarray-shape/index.html | 8 ++++---- api/manipulation/ndarray-size/index.html | 8 ++++---- api/manipulation/ndarray-toArray/index.html | 8 ++++---- api/manipulation/ndarray-transpose/index.html | 8 ++++---- .../arithmetic/ndarray-add/index.html | 8 ++++---- .../arithmetic/ndarray-divide/index.html | 8 ++++---- .../arithmetic/ndarray-mod/index.html | 8 ++++---- .../arithmetic/ndarray-multiply/index.html | 8 ++++---- .../arithmetic/ndarray-negative/index.html | 8 ++++---- .../arithmetic/ndarray-pow/index.html | 8 ++++---- .../arithmetic/ndarray-subtract/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-exp/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-exp2/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-expm1/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-log/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-log10/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-log1p/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-log2/index.html | 8 ++++---- .../exponents-and-logarithms/ndarray-logb/index.html | 8 ++++---- .../extrema-finding/ndarray-max/index.html | 8 ++++---- .../extrema-finding/ndarray-min/index.html | 8 ++++---- .../hyperbolic/ndarray-arccosh/index.html | 8 ++++---- .../hyperbolic/ndarray-arcsinh/index.html | 8 ++++---- .../hyperbolic/ndarray-arctanh/index.html | 8 ++++---- .../hyperbolic/ndarray-cosh/index.html | 8 ++++---- .../hyperbolic/ndarray-sinh/index.html | 8 ++++---- .../hyperbolic/ndarray-tanh/index.html | 8 ++++---- .../miscellaneous/ndarray-abs/index.html | 8 ++++---- .../miscellaneous/ndarray-clip/index.html | 8 ++++---- .../miscellaneous/ndarray-sign/index.html | 8 ++++---- .../miscellaneous/ndarray-sinc/index.html | 8 ++++---- .../miscellaneous/ndarray-sqrt/index.html | 8 ++++---- .../miscellaneous/ndarray-square/index.html | 8 ++++---- .../rounding/ndarray-ceil/index.html | 8 ++++---- .../rounding/ndarray-fix/index.html | 8 ++++---- .../rounding/ndarray-floor/index.html | 8 ++++---- .../rounding/ndarray-rint/index.html | 8 ++++---- .../rounding/ndarray-round/index.html | 8 ++++---- .../rounding/ndarray-trunc/index.html | 8 ++++---- .../sum-products-differences/ndarray-prod/index.html | 8 ++++---- .../sum-products-differences/ndarray-sum/index.html | 8 ++++---- .../trigonometric/ndarray-arccos/index.html | 8 ++++---- .../trigonometric/ndarray-arcsin/index.html | 8 ++++---- .../trigonometric/ndarray-arctan/index.html | 8 ++++---- .../trigonometric/ndarray-cos/index.html | 8 ++++---- .../trigonometric/ndarray-degrees/index.html | 8 ++++---- .../trigonometric/ndarray-radians/index.html | 8 ++++---- .../trigonometric/ndarray-sin/index.html | 8 ++++---- .../trigonometric/ndarray-tan/index.html | 8 ++++---- api/random/ndarray-normal/index.html | 8 ++++---- api/random/ndarray-poisson/index.html | 8 ++++---- api/random/ndarray-standard_normal/index.html | 8 ++++---- api/random/ndarray-uniform/index.html | 8 ++++---- api/signal-processing/ndarray-convolve2d/index.html | 8 ++++---- api/statistics/ndarray-average/index.html | 8 ++++---- api/statistics/ndarray-mean/index.html | 8 ++++---- api/statistics/ndarray-median/index.html | 8 ++++---- api/statistics/ndarray-quantile/index.html | 8 ++++---- api/statistics/ndarray-std/index.html | 8 ++++---- api/statistics/ndarray-variance/index.html | 8 ++++---- .../js/{c4f5d8e4.7c8fe914.js => c4f5d8e4.6163696d.js} | 2 +- assets/js/{main.453ca7ef.js => main.d9caeb63.js} | 4 ++-- ...7ef.js.LICENSE.txt => main.d9caeb63.js.LICENSE.txt} | 0 ...ntime~main.428a33a5.js => runtime~main.85e982c3.js} | 2 +- docs/category/fundamentals/index.html | 8 ++++---- docs/image-processing/index.html | 8 ++++---- docs/intro/index.html | 8 ++++---- docs/ndarray/index.html | 8 ++++---- docs/tutorial-basics/broadcast/index.html | 8 ++++---- docs/tutorial-basics/gpu/index.html | 8 ++++---- docs/tutorial-basics/iterating-ndarray/index.html | 8 ++++---- docs/tutorial-basics/ndarray-creation/index.html | 8 ++++---- docs/tutorial-basics/ndarray-indexing/index.html | 8 ++++---- index.html | 10 +++++----- install/from-source/index.html | 8 ++++---- install/install/index.html | 8 ++++---- lattice/api/layers/convolution-layers/index.html | 8 ++++---- lattice/api/layers/core/index.html | 8 ++++---- lattice/api/layers/merging-layers/index.html | 8 ++++---- lattice/api/layers/normalization-layers/index.html | 8 ++++---- lattice/api/layers/pooling-layers/index.html | 8 ++++---- lattice/api/layers/regularization-layers/index.html | 8 ++++---- lattice/api/layers/reshaping-layers/index.html | 8 ++++---- lattice/api/losses/probabilistic/index.html | 8 ++++---- lattice/api/losses/regression/index.html | 8 ++++---- lattice/api/model/model-class/index.html | 8 ++++---- lattice/api/model/persistence/index.html | 8 ++++---- lattice/api/model/stack/index.html | 8 ++++---- lattice/api/model/training/index.html | 8 ++++---- lattice/api/optimizers/adadelta/index.html | 8 ++++---- lattice/api/optimizers/adafactor/index.html | 8 ++++---- lattice/api/optimizers/adagrad/index.html | 8 ++++---- lattice/api/optimizers/adam/index.html | 8 ++++---- lattice/api/optimizers/nadam/index.html | 8 ++++---- lattice/api/optimizers/rmsprop/index.html | 8 ++++---- lattice/api/optimizers/sgd/index.html | 8 ++++---- lattice/category/api/index.html | 8 ++++---- .../category/getting-started-with-lattice/index.html | 8 ++++---- lattice/category/layers-api/index.html | 8 ++++---- lattice/category/losses-api/index.html | 8 ++++---- lattice/category/model-api/index.html | 8 ++++---- lattice/category/numpower-lattice/index.html | 8 ++++---- lattice/category/optimizers-api/index.html | 8 ++++---- lattice/getting-started/getting-started/index.html | 8 ++++---- lattice/intro/lattice-install/index.html | 8 ++++---- lattice/intro/lattice-intro/index.html | 8 ++++---- lunr-index-1720524005749.json | 1 - lunr-index-1720525191869.json | 1 + lunr-index.json | 2 +- markdown-page/index.html | 8 ++++---- search-doc-1720524005749.json | 1 - search-doc-1720525191869.json | 1 + search-doc.json | 2 +- tensor/api/arithmetics/add/index.html | 8 ++++---- tensor/api/arithmetics/divide/index.html | 8 ++++---- tensor/api/arithmetics/mod/index.html | 8 ++++---- tensor/api/arithmetics/multiply/index.html | 8 ++++---- tensor/api/arithmetics/negative/index.html | 8 ++++---- tensor/api/arithmetics/power/index.html | 8 ++++---- tensor/api/arithmetics/subtract/index.html | 8 ++++---- tensor/api/arithmetics/sum/index.html | 8 ++++---- tensor/api/arithmetics/sum_axis/index.html | 8 ++++---- tensor/api/exponents/exp/index.html | 8 ++++---- tensor/api/exponents/exp2/index.html | 8 ++++---- tensor/api/exponents/expm1/index.html | 8 ++++---- tensor/api/exponents/log/index.html | 8 ++++---- tensor/api/exponents/log10/index.html | 8 ++++---- tensor/api/exponents/log1p/index.html | 8 ++++---- tensor/api/exponents/log2/index.html | 8 ++++---- tensor/api/hyperbolic/arccosh/index.html | 8 ++++---- tensor/api/hyperbolic/arcsinh/index.html | 8 ++++---- tensor/api/hyperbolic/arctan2/index.html | 8 ++++---- tensor/api/hyperbolic/arctanh/index.html | 8 ++++---- tensor/api/hyperbolic/cosh/index.html | 8 ++++---- tensor/api/hyperbolic/sinc/index.html | 8 ++++---- tensor/api/hyperbolic/sinh/index.html | 8 ++++---- tensor/api/hyperbolic/tanh/index.html | 8 ++++---- tensor/api/linalg/cond/index.html | 8 ++++---- tensor/api/linalg/det/index.html | 8 ++++---- tensor/api/linalg/dot/index.html | 8 ++++---- tensor/api/linalg/matmul/index.html | 8 ++++---- tensor/api/linalg/matrix_rank/index.html | 8 ++++---- tensor/api/linalg/norm/index.html | 8 ++++---- tensor/api/linalg/outer/index.html | 8 ++++---- tensor/api/linalg/svd/index.html | 8 ++++---- tensor/api/manipulation/reshape/index.html | 8 ++++---- tensor/api/rounding/ceil/index.html | 8 ++++---- tensor/api/rounding/clip/index.html | 8 ++++---- tensor/api/rounding/floor/index.html | 8 ++++---- tensor/api/rounding/trunc/index.html | 8 ++++---- tensor/api/tensor/backward/index.html | 8 ++++---- tensor/api/tensor/detach/index.html | 8 ++++---- tensor/api/tensor/getData/index.html | 8 ++++---- tensor/api/tensor/getName/index.html | 8 ++++---- tensor/api/tensor/getShape/index.html | 8 ++++---- tensor/api/tensor/getTape/index.html | 8 ++++---- tensor/api/tensor/grad/index.html | 8 ++++---- tensor/api/tensor/graph/index.html | 8 ++++---- tensor/api/tensor/isGPU/index.html | 8 ++++---- tensor/api/tensor/isScalar/index.html | 8 ++++---- tensor/api/tensor/numElements/index.html | 8 ++++---- tensor/api/tensor/requireGrad/index.html | 8 ++++---- tensor/api/tensor/resetGradients/index.html | 8 ++++---- tensor/api/tensor/toArray/index.html | 8 ++++---- tensor/api/trigonometric/acos/index.html | 8 ++++---- tensor/api/trigonometric/arcsin/index.html | 8 ++++---- tensor/api/trigonometric/arctan/index.html | 8 ++++---- tensor/api/trigonometric/cos/index.html | 8 ++++---- tensor/api/trigonometric/radians/index.html | 8 ++++---- tensor/api/trigonometric/sin/index.html | 8 ++++---- tensor/api/trigonometric/tan/index.html | 8 ++++---- tensor/category/api/index.html | 8 ++++---- tensor/category/arithmetics/index.html | 8 ++++---- tensor/category/exponential-and-logarithms/index.html | 8 ++++---- tensor/category/hyperbolic-operations/index.html | 8 ++++---- tensor/category/linear-algebra/index.html | 8 ++++---- .../low-level-classes-and-operations/index.html | 8 ++++---- tensor/category/manipulation/index.html | 8 ++++---- tensor/category/neural-network-module/index.html | 8 ++++---- tensor/category/numpower-autograd/index.html | 8 ++++---- tensor/category/rounding/index.html | 8 ++++---- tensor/category/tensor-api/index.html | 8 ++++---- tensor/category/trigonometric/index.html | 8 ++++---- tensor/intro/autograd-intro/index.html | 8 ++++---- tensor/intro/autograd-model/index.html | 8 ++++---- tensor/intro/basic-usage/index.html | 8 ++++---- tensor/intro/installing/index.html | 8 ++++---- tensor/low-level/arithmetic-operand/index.html | 8 ++++---- tensor/nn/activations/index.html | 8 ++++---- tensor/nn/losses/index.html | 8 ++++---- 256 files changed, 989 insertions(+), 990 deletions(-) delete mode 100644 CNAME rename assets/js/{c4f5d8e4.7c8fe914.js => c4f5d8e4.6163696d.js} (97%) rename assets/js/{main.453ca7ef.js => main.d9caeb63.js} (98%) rename assets/js/{main.453ca7ef.js.LICENSE.txt => main.d9caeb63.js.LICENSE.txt} (100%) rename assets/js/{runtime~main.428a33a5.js => runtime~main.85e982c3.js} (99%) delete mode 100644 lunr-index-1720524005749.json create mode 100644 lunr-index-1720525191869.json delete mode 100644 search-doc-1720524005749.json create mode 100644 search-doc-1720525191869.json diff --git a/404.html b/404.html index 6fcd45fa..bf613941 100644 --- a/404.html +++ b/404.html @@ -4,13 +4,13 @@ Page Not Found | NumPower - - + +
Skip to main content

Page Not Found

We could not find what you were looking for.

Please contact the owner of the site that linked you to the original URL and let them know their link is broken.

- - + + \ No newline at end of file diff --git a/CNAME b/CNAME deleted file mode 100644 index 8d849c00..00000000 --- a/CNAME +++ /dev/null @@ -1 +0,0 @@ -numpower.org \ No newline at end of file diff --git a/api/category/arithmetics/index.html b/api/category/arithmetics/index.html index 44ecd9c8..77f3f90f 100644 --- a/api/category/arithmetics/index.html +++ b/api/category/arithmetics/index.html @@ -4,13 +4,13 @@ Arithmetics | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/devices-functions/index.html b/api/category/devices-functions/index.html index adab4ad7..6365927e 100644 --- a/api/category/devices-functions/index.html +++ b/api/category/devices-functions/index.html @@ -4,13 +4,13 @@ Devices Functions | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/exponents-and-logarithms/index.html b/api/category/exponents-and-logarithms/index.html index 9ff7360d..28cfcaa5 100644 --- a/api/category/exponents-and-logarithms/index.html +++ b/api/category/exponents-and-logarithms/index.html @@ -4,13 +4,13 @@ Exponents and logarithms | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/extrema-finding/index.html b/api/category/extrema-finding/index.html index 3e645777..87c1624b 100644 --- a/api/category/extrema-finding/index.html +++ b/api/category/extrema-finding/index.html @@ -4,13 +4,13 @@ Extrema Finding | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/hyperbolic/index.html b/api/category/hyperbolic/index.html index 507e35a7..e510ac27 100644 --- a/api/category/hyperbolic/index.html +++ b/api/category/hyperbolic/index.html @@ -4,13 +4,13 @@ Hyperbolic | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/image-processing/index.html b/api/category/image-processing/index.html index 6ee4f6a7..5e132029 100644 --- a/api/category/image-processing/index.html +++ b/api/category/image-processing/index.html @@ -4,13 +4,13 @@ Image Processing | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/initializers/index.html b/api/category/initializers/index.html index b408503a..369c29d2 100644 --- a/api/category/initializers/index.html +++ b/api/category/initializers/index.html @@ -4,13 +4,13 @@ Initializers | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/linear-algebra/index.html b/api/category/linear-algebra/index.html index 20de6825..7c4bf39d 100644 --- a/api/category/linear-algebra/index.html +++ b/api/category/linear-algebra/index.html @@ -4,13 +4,13 @@ Linear algebra | NumPower - - + +
Skip to main content

Linear algebra

Dive into the functions associated with linear algebra operations, such as matrix multiplication, determinants, solving linear equations, among others.

- - + + \ No newline at end of file diff --git a/api/category/logic-functions/index.html b/api/category/logic-functions/index.html index 47609c78..432f278e 100644 --- a/api/category/logic-functions/index.html +++ b/api/category/logic-functions/index.html @@ -4,13 +4,13 @@ Logic Functions | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/low-level-debug/index.html b/api/category/low-level-debug/index.html index 30447795..a5e198d2 100644 --- a/api/category/low-level-debug/index.html +++ b/api/category/low-level-debug/index.html @@ -4,13 +4,13 @@ Low-level debug | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/manipulation/index.html b/api/category/manipulation/index.html index 71422ae7..1a487639 100644 --- a/api/category/manipulation/index.html +++ b/api/category/manipulation/index.html @@ -4,13 +4,13 @@ Manipulation | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/math/index.html b/api/category/math/index.html index bb0fa5d6..0391ba88 100644 --- a/api/category/math/index.html +++ b/api/category/math/index.html @@ -4,13 +4,13 @@ Math | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/miscellaneous/index.html b/api/category/miscellaneous/index.html index 2fecb6fa..f86a1235 100644 --- a/api/category/miscellaneous/index.html +++ b/api/category/miscellaneous/index.html @@ -4,13 +4,13 @@ Miscellaneous | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/random/index.html b/api/category/random/index.html index 29da055b..0d52ed51 100644 --- a/api/category/random/index.html +++ b/api/category/random/index.html @@ -4,13 +4,13 @@ Random | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/rounding/index.html b/api/category/rounding/index.html index 9bdaa87d..dc727df7 100644 --- a/api/category/rounding/index.html +++ b/api/category/rounding/index.html @@ -4,13 +4,13 @@ Rounding | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/signal-processing/index.html b/api/category/signal-processing/index.html index bb52a543..974f4883 100644 --- a/api/category/signal-processing/index.html +++ b/api/category/signal-processing/index.html @@ -4,13 +4,13 @@ Signal Processing | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/statistics/index.html b/api/category/statistics/index.html index 7118d7a1..bcf7cd8b 100644 --- a/api/category/statistics/index.html +++ b/api/category/statistics/index.html @@ -4,13 +4,13 @@ Statistics | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/sums-products-differences/index.html b/api/category/sums-products-differences/index.html index edcf0d0a..0b106819 100644 --- a/api/category/sums-products-differences/index.html +++ b/api/category/sums-products-differences/index.html @@ -4,13 +4,13 @@ Sums, products, differences | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/category/trigonometric/index.html b/api/category/trigonometric/index.html index b1ab03b4..67a07386 100644 --- a/api/category/trigonometric/index.html +++ b/api/category/trigonometric/index.html @@ -4,13 +4,13 @@ Trigonometric | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/devices-functions/ndarray-cpu/index.html b/api/devices-functions/ndarray-cpu/index.html index 9b8bc24d..783fe228 100644 --- a/api/devices-functions/ndarray-cpu/index.html +++ b/api/devices-functions/ndarray-cpu/index.html @@ -4,13 +4,13 @@ NDArray::cpu | NumPower - - + +
Skip to main content

NDArray::cpu

public function cpu(): NDArray;

Copy the NDArray to the CPU for computation. If the NDArray is already in RAM, a copy will still be made.


Return

Type NDArray

  • A copy of the NDArray but stored in RAM.

Examples

use \NDArray as nd;

$a_gpu = nd::array([2, -2, 3])->gpu();

$a_cpu = $a->cpu();

$a_gpu->dump();
$a_cpu->dump();
Output
=================================================
NDArray.uuid 0
NDArray.dims [ 3 ]
NDArray.strides [ 4 ]
NDArray.ndim 1
NDArray.device GPU
NDArray.refcount 1
NDArray.descriptor.elsize 4
NDArray.descriptor.numElements 3
NDArray.descriptor.type float32
=================================================

=================================================
NDArray.uuid 1
NDArray.dims [ 3 ]
NDArray.strides [ 4 ]
NDArray.ndim 1
NDArray.device CPU
NDArray.refcount 1
NDArray.descriptor.elsize 4
NDArray.descriptor.numElements 3
NDArray.descriptor.type float32
=================================================
- - + + \ No newline at end of file diff --git a/api/devices-functions/ndarray-gpu/index.html b/api/devices-functions/ndarray-gpu/index.html index d12aa788..b74c9ef8 100644 --- a/api/devices-functions/ndarray-gpu/index.html +++ b/api/devices-functions/ndarray-gpu/index.html @@ -4,14 +4,14 @@ NDArray::gpu | NumPower - - + +
Skip to main content

NDArray::gpu

public function gpu(): NDArray;

Copy the NDArray to the GPU for computation. If the NDArray is already in VRAM, a copy will still be made.


Return

Type NDArray

  • A copy of the NDArray but stored in VRAM.

Exceptions

If no devices are detected or support GPU operations, a fatal error will be raised.

Fatal error: Uncaught Error: No GPU device available or CUDA not enabled in /src/test.php:8
Stack trace:
#0 /src/test.php(8): NDArray->gpu()

Notes

tip

CUDA DEVICES

You can use the dumpDevices method to check which devices were detected by NumPower. Currently only video cards with CUDA support are supported (NVIDIA).


Examples

use \NDArray as nd;

$a = nd::array([2, -2, 3]);

$a_gpu = $a->gpu();

$a->dump();
$a_gpu->dump();
Output
=================================================
NDArray.uuid 0
NDArray.dims [ 3 ]
NDArray.strides [ 4 ]
NDArray.ndim 1
NDArray.device CPU
NDArray.refcount 1
NDArray.descriptor.elsize 4
NDArray.descriptor.numElements 3
NDArray.descriptor.type float32
=================================================

=================================================
NDArray.uuid 1
NDArray.dims [ 3 ]
NDArray.strides [ 4 ]
NDArray.ndim 1
NDArray.device GPU
NDArray.refcount 1
NDArray.descriptor.elsize 4
NDArray.descriptor.numElements 3
NDArray.descriptor.type float32
=================================================
- - + + \ No newline at end of file diff --git a/api/devices-functions/ndarray-isgpu/index.html b/api/devices-functions/ndarray-isgpu/index.html index 3987d0ab..81a9ca74 100644 --- a/api/devices-functions/ndarray-isgpu/index.html +++ b/api/devices-functions/ndarray-isgpu/index.html @@ -4,13 +4,13 @@ NDArray::isGPU | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/devices-functions/ndarray-setdevice/index.html b/api/devices-functions/ndarray-setdevice/index.html index b280f3cf..635e72b1 100644 --- a/api/devices-functions/ndarray-setdevice/index.html +++ b/api/devices-functions/ndarray-setdevice/index.html @@ -4,13 +4,13 @@ NDArray::setDevice | NumPower - - + +
Skip to main content

NDArray::setDevice

public static function setDevice(int $deviceId): void;

Specifies which GPU device to use by ID. By default, all operations are performed on GPU id = 0.

Use the dumpDevices method if you want to check the ID in a multi-GPU environment.

- - + + \ No newline at end of file diff --git a/api/image-support/ndarray-toimage/index.html b/api/image-support/ndarray-toimage/index.html index fd5b98ab..9d18d610 100644 --- a/api/image-support/ndarray-toimage/index.html +++ b/api/image-support/ndarray-toimage/index.html @@ -4,13 +4,13 @@ NDArray::toImage | NumPower - - + +
Skip to main content

NDArray::toImage

public function toImage(): GdImage;

Convert an array of shape (3, h, w) to a PHP-GD RGB image.


Notes

note

PHP-GD REQUIRED

The PHP-GD extension must be installed during NumPower compilation for this function to be available.

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.


Examples

use \NDArray as nd;

$gd_image_array = nd::array(imagecreatefromjpeg("test_img.jpg"));

print_r($gd_image_array->shape());

// Your operations here
// ...
// End of operations

$gd_image = $gd_image_array->toImage();
print_r($gd_image); // Now we have a GD image
imagejpeg($gd_image, "out.jpg"); // Save the image
Array
(
[0] => 3
[1] => 1200
[2] => 1920
)
GdImage Object
(
)
- - + + \ No newline at end of file diff --git a/api/initializers/ndarray-arange/index.html b/api/initializers/ndarray-arange/index.html index e0b6d714..f671270f 100644 --- a/api/initializers/ndarray-arange/index.html +++ b/api/initializers/ndarray-arange/index.html @@ -4,13 +4,13 @@ NDArray::arange | NumPower - - + +
Skip to main content

NDArray::arange

public static function arange(float|int $stop, float|int $start = 0, float|int $step = 1): NDArray;

Return evenly spaced values within a given interval.


Parameters

$start

Type scalar

  • Start of the interval. Default value is 0.

$stop

Type scalar

  • Stop of the interval.

$step

Type scalar

  • Step of the interval. Default value is 1.

Return

Type - NDArray

  • A single-precision (float32) NDArray with evenly spaced values.

- - + + \ No newline at end of file diff --git a/api/initializers/ndarray-array/index.html b/api/initializers/ndarray-array/index.html index c40ec570..186ccb90 100644 --- a/api/initializers/ndarray-array/index.html +++ b/api/initializers/ndarray-array/index.html @@ -4,13 +4,13 @@ NDArray::array | NumPower - - + +
Skip to main content

NDArray::array

public static function array(array|float|int $array): NDArray;

Creates a new NDArray from a PHP array. It is the equivalent of new NDArray($array);


Parameters

$array

Type array[long|double,]

  • The PHP array to be converted to a NDArray

Return

Type - NDArray

  • A single-precision (float32) NDArray with the same shape and values of $array

Notes

note

Every floating point in PHP is a double precision (float64) so some precision may be lost during conversion.


Examples

use \NDArray as nd;

$a = nd::array([[1, 2], [3, 4]]);
print_r($a);
[[1, 2],
[3, 4]]

- - + + \ No newline at end of file diff --git a/api/initializers/ndarray-identity/index.html b/api/initializers/ndarray-identity/index.html index 3b7aab41..850d5d67 100644 --- a/api/initializers/ndarray-identity/index.html +++ b/api/initializers/ndarray-identity/index.html @@ -4,15 +4,15 @@ NDArray::identity | NumPower - - + +
Skip to main content

NDArray::identity

public static function identity(int $size): NDArray;

This function returns a square array, where the main diagonal consists of ones and all other elements are zeros. It takes a parameter $size which determines the number of rows and columns in the output array.


Parameters

$size

Type long

  • Number of rows and columns of the new square array of size ($size, $size)

Return

Type - NDArray

  • Return a new square array of size ($size, $size)

Examples

use \NDArray as nd;

$a = nd::identity(10);
print_r($a);
[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]

Exceptions

If $size is less than 0 a Fatal error will be raised

Fatal error: Uncaught Error: negative dimensions are not allowed in /src/test.php:4
- - + + \ No newline at end of file diff --git a/api/initializers/ndarray-ones/index.html b/api/initializers/ndarray-ones/index.html index 255e8c43..ad5bba24 100644 --- a/api/initializers/ndarray-ones/index.html +++ b/api/initializers/ndarray-ones/index.html @@ -4,13 +4,13 @@ NDArray::ones | NumPower - - + +
Skip to main content

NDArray::ones

public static function ones(array $shape): NDArray;

The function creates a new NDArray with the specified shape, filled with ones.


Parameters

$shape

Type array[long,]

  • The shape parameter can be a sequence of integers, indicating the dimensions of the array

Return

Type - NDArray

  • Return an array of shape $shape filles with ones.
- - + + \ No newline at end of file diff --git a/api/initializers/ndarray-zeros/index.html b/api/initializers/ndarray-zeros/index.html index 05132e49..a7cd1f4c 100644 --- a/api/initializers/ndarray-zeros/index.html +++ b/api/initializers/ndarray-zeros/index.html @@ -4,13 +4,13 @@ NDArray::zeros | NumPower - - + +
Skip to main content

NDArray::zeros

public static function zeros(array $shape): NDArray;

The function creates a new NDArray with the specified shape, filled with zeros.


Parameters

$shape

Type array[long,]

  • The shape parameter can be a sequence of integers, indicating the dimensions of the array

Return

Type - NDArray

  • Return an array of shape $shape filled with zeros.
- - + + \ No newline at end of file diff --git a/api/intro/index.html b/api/intro/index.html index d51f4579..43bada84 100644 --- a/api/intro/index.html +++ b/api/intro/index.html @@ -4,8 +4,8 @@ NumPower API | NumPower - - + +
@@ -27,7 +27,7 @@ community grows and the library evolves, we remain committed to keeping this documentation comprehensive, up-to-date, and user-friendly.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-cholesky/index.html b/api/linear-algebra/ndarray-cholesky/index.html index 48cf1fe2..922825a3 100644 --- a/api/linear-algebra/ndarray-cholesky/index.html +++ b/api/linear-algebra/ndarray-cholesky/index.html @@ -4,14 +4,14 @@ NDArray::cholesky | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-cond/index.html b/api/linear-algebra/ndarray-cond/index.html index 63e29c07..109a5273 100644 --- a/api/linear-algebra/ndarray-cond/index.html +++ b/api/linear-algebra/ndarray-cond/index.html @@ -4,13 +4,13 @@ NDArray::cond | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-det/index.html b/api/linear-algebra/ndarray-det/index.html index 68c394c1..310a1bfc 100644 --- a/api/linear-algebra/ndarray-det/index.html +++ b/api/linear-algebra/ndarray-det/index.html @@ -4,14 +4,14 @@ NDArray::det | NumPower - - + +
Skip to main content

NDArray::det

public static function det(NDArray|array $a): float;

Computes the determinant of a square array, which represents the scaling factor of the volume of the array transformation.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-dot/index.html b/api/linear-algebra/ndarray-dot/index.html index fa5b028d..c827f3c2 100644 --- a/api/linear-algebra/ndarray-dot/index.html +++ b/api/linear-algebra/ndarray-dot/index.html @@ -4,8 +4,8 @@ NDArray::dot | NumPower - - + +
@@ -18,7 +18,7 @@ with any dimensionality greater than 1, the dot product operation results in an array. The returned array will have a shape determined by the dimensions of $a and $b according to the dot product rules.

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.


Examples

use \NDArray as nd;

$a = nd::array([[1, 2],[3, 4]]);
$b = nd::array([1, 2]);

$result = nd::dot($a, $b);
print_r($result);
[5, 11]
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-eig/index.html b/api/linear-algebra/ndarray-eig/index.html index 9d722c23..c9fcac09 100644 --- a/api/linear-algebra/ndarray-eig/index.html +++ b/api/linear-algebra/ndarray-eig/index.html @@ -4,13 +4,13 @@ NDArray::eig | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-inner/index.html b/api/linear-algebra/ndarray-inner/index.html index e8e6e5da..09789d22 100644 --- a/api/linear-algebra/ndarray-inner/index.html +++ b/api/linear-algebra/ndarray-inner/index.html @@ -4,15 +4,15 @@ NDArray::inner | NumPower - - + +
Skip to main content

NDArray::inner

public static function inner(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray|float;

Calculates the inner product of two arrays. This operation involves multiplying corresponding elements of the arrays and summing them up.

  • When dealing with N-D arrays, the inner product is computed by taking a sum product over the last axes of the arrays.

Parameters

$a $b

Type NDArray|array|long|double

The arrays to perfom the inner product.


Return

Type NDArray

  • If both $a and $b are scalars or 1-D arrays, the function will return a scalar value. Otherwise, if the input arrays have more than one dimension, an array will be returned.

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.


Examples

use \NDArray as nd;

$a = nd::array([2, -2, 3]);
$b = nd::array([1, -1.5, 3]);

$result = nd::inner($a, $b);
print_r($result);
14
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-inv/index.html b/api/linear-algebra/ndarray-inv/index.html index 3f235eaa..3d2e8fb7 100644 --- a/api/linear-algebra/ndarray-inv/index.html +++ b/api/linear-algebra/ndarray-inv/index.html @@ -4,13 +4,13 @@ NDArray::inv | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-lstsq/index.html b/api/linear-algebra/ndarray-lstsq/index.html index 12931429..eaa0e391 100644 --- a/api/linear-algebra/ndarray-lstsq/index.html +++ b/api/linear-algebra/ndarray-lstsq/index.html @@ -4,14 +4,14 @@ NDArray::lstsq | NumPower - - + +
Skip to main content

NDArray::lstsq

public static function lstsq(NDArray|array $a, NDArray|array $b): NDArray;

Performs the least-squares solution to a linear matrix equation Ax = b, where $a is a given array and $b is the target array.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-lu/index.html b/api/linear-algebra/ndarray-lu/index.html index 5a100e67..3d624306 100644 --- a/api/linear-algebra/ndarray-lu/index.html +++ b/api/linear-algebra/ndarray-lu/index.html @@ -4,13 +4,13 @@ NDArray::lu | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-matmul/index.html b/api/linear-algebra/ndarray-matmul/index.html index 5bdf64f4..e22ec1db 100644 --- a/api/linear-algebra/ndarray-matmul/index.html +++ b/api/linear-algebra/ndarray-matmul/index.html @@ -4,13 +4,13 @@ NDArray::matmul | NumPower - - + +
Skip to main content

NDArray::matmul

public static function matmul(NDArray|array $a, NDArray|array $b): NDArray;

Performs matrix multiplication between two arrays and returns the result as a new array.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-matrixrank/index.html b/api/linear-algebra/ndarray-matrixrank/index.html index a123ad27..96d802ac 100644 --- a/api/linear-algebra/ndarray-matrixrank/index.html +++ b/api/linear-algebra/ndarray-matrixrank/index.html @@ -4,13 +4,13 @@ NDArray::matrix_rank | NumPower - - + +
Skip to main content

NDArray::matrix_rank

public static function matrix_rank(NDArray|array $a, float $tol = 1e-6): NDArray;

Calculates the numerical rank of a matrix, number of singular values of the array that are greater than tol.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-norm/index.html b/api/linear-algebra/ndarray-norm/index.html index 1476c3a3..bf93dabd 100644 --- a/api/linear-algebra/ndarray-norm/index.html +++ b/api/linear-algebra/ndarray-norm/index.html @@ -4,14 +4,14 @@ NDArray::norm | NumPower - - + +
Skip to main content

NDArray::norm

public static function norm(NDArray|array $a, int $order = 2): float;

Calculates different norms (e.g., L1 norm, L2 norm) of an array, providing various measures of its magnitude.

$order options

  • 1 - L1-Norm
  • 2 - L2-Norm

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-outer/index.html b/api/linear-algebra/ndarray-outer/index.html index cd0f443b..c4b1a440 100644 --- a/api/linear-algebra/ndarray-outer/index.html +++ b/api/linear-algebra/ndarray-outer/index.html @@ -4,14 +4,14 @@ NDArray::outer | NumPower - - + +
Skip to main content

NDArray::outer

public static function outer(NDArray|array $a, NDArray|array $b): NDArray;

Computes the outer product of two vectors, which results in a higher-dimensional array with dimensions calculated from the input arrays' dimensions.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-qr/index.html b/api/linear-algebra/ndarray-qr/index.html index f1ab7720..f3bb770e 100644 --- a/api/linear-algebra/ndarray-qr/index.html +++ b/api/linear-algebra/ndarray-qr/index.html @@ -4,14 +4,14 @@ NDArray::qr | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-solve/index.html b/api/linear-algebra/ndarray-solve/index.html index 5fdc3463..488c8c35 100644 --- a/api/linear-algebra/ndarray-solve/index.html +++ b/api/linear-algebra/ndarray-solve/index.html @@ -4,13 +4,13 @@ NDArray::solve | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-svd/index.html b/api/linear-algebra/ndarray-svd/index.html index ef225862..685aba6e 100644 --- a/api/linear-algebra/ndarray-svd/index.html +++ b/api/linear-algebra/ndarray-svd/index.html @@ -4,14 +4,14 @@ NDArray::svd | NumPower - - + +
Skip to main content

NDArray::svd

public static function svd(NDArray|array $a): array;

Calculates the Singular Value Decomposition (SVD) of an array, which decomposes the array into three separate arrays: U, Sigma, and V^T.


Return

Type - array[NDArray, NDArray, NDArray]

  • PHP array containing the Unitary Arrays (U) [0], the vector(s) with the singular values (S) [1] and the unitary arrays (Vh) [2]

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/linear-algebra/ndarray-trace/index.html b/api/linear-algebra/ndarray-trace/index.html index 0b988cf6..96e3d1a8 100644 --- a/api/linear-algebra/ndarray-trace/index.html +++ b/api/linear-algebra/ndarray-trace/index.html @@ -4,13 +4,13 @@ NDArray::trace | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/logic/ndarray-all/index.html b/api/logic/ndarray-all/index.html index 8f6f32d1..a7b94f00 100644 --- a/api/logic/ndarray-all/index.html +++ b/api/logic/ndarray-all/index.html @@ -4,14 +4,14 @@ NDArray::all | NumPower - - + +
Skip to main content

NDArray::all

public static function all(NDArray|array|float|int $a): bool;

Returns a single boolean value indicating whether all elements in the array evaluate to true. It checks if all elements are nonzero or equivalent to true.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/logic/ndarray-allclose/index.html b/api/logic/ndarray-allclose/index.html index c86c0806..d96e6f5c 100644 --- a/api/logic/ndarray-allclose/index.html +++ b/api/logic/ndarray-allclose/index.html @@ -4,13 +4,13 @@ NDArray::allclose | NumPower - - + +
Skip to main content

NDArray::allclose

public static function allclose(NDArray|array|float|int $a, NDArray|array|float|int $b, float $rtol = 1e-05, float $atol = 1e-08): NDArray;

Checks if all elements in two arrays are approximately equal within a specified tolerance element-wise.


- - + + \ No newline at end of file diff --git a/api/logic/ndarray-equal/index.html b/api/logic/ndarray-equal/index.html index 839855f0..5463b322 100644 --- a/api/logic/ndarray-equal/index.html +++ b/api/logic/ndarray-equal/index.html @@ -4,15 +4,15 @@ NDArray::equal | NumPower - - + +
Skip to main content

NDArray::equal

public static function equal(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray;

Performs an element-wise equality comparison between two arrays and returns a new array of the same shape. The result will be 1 where the elements are equal and 0 where they are not.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/logic/ndarray-greater/index.html b/api/logic/ndarray-greater/index.html index 17308cc2..aa657439 100644 --- a/api/logic/ndarray-greater/index.html +++ b/api/logic/ndarray-greater/index.html @@ -4,15 +4,15 @@ NDArray::greater | NumPower - - + +
Skip to main content

NDArray::greater

public static function greater(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray;

Performs an element-wise greater-than comparison between two arrays and returns a new array of the same shape. The result will be 1 where the elements in the first array are greater than the corresponding elements in the second array, and 0 otherwise.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/logic/ndarray-greater_equal/index.html b/api/logic/ndarray-greater_equal/index.html index db4cb8a2..d43101c5 100644 --- a/api/logic/ndarray-greater_equal/index.html +++ b/api/logic/ndarray-greater_equal/index.html @@ -4,15 +4,15 @@ NDArray::greater_equal | NumPower - - + +
Skip to main content

NDArray::greater_equal

public static function greater_equal(NDArray|array|scalar $a, NDArray|array|scalar $b): NDArray;

Performs an element-wise greater-than-or-equal-to comparison between two arrays and returns a new array of the same shape. The result will be 1 where the elements in the first array are greater than or equal to the corresponding elements in the second array, and 0 otherwise.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/logic/ndarray-less/index.html b/api/logic/ndarray-less/index.html index 3fcfd954..47e771cc 100644 --- a/api/logic/ndarray-less/index.html +++ b/api/logic/ndarray-less/index.html @@ -4,15 +4,15 @@ NDArray::less | NumPower - - + +
Skip to main content

NDArray::less

public static function less(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray;

Performs an element-wise less-than comparison between two arrays and returns a new array of the same shape. The result will be 1 where the elements in the first array are less than the corresponding elements in the second array, and 0 otherwise.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/logic/ndarray-less_equal/index.html b/api/logic/ndarray-less_equal/index.html index f5f36685..accce8cc 100644 --- a/api/logic/ndarray-less_equal/index.html +++ b/api/logic/ndarray-less_equal/index.html @@ -4,15 +4,15 @@ NDArray::less_equal | NumPower - - + +
Skip to main content

NDArray::less_equal

public static function less_equal(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray;

Performs an element-wise less-than-or-equal-to comparison between two arrays and returns a new array of the same shape. The result will be 1 where the elements in the first array are less than or equal to the corresponding elements in the second array, and 0 otherwise.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/logic/ndarray-not_equal/index.html b/api/logic/ndarray-not_equal/index.html index d16a1c9f..afa9fe57 100644 --- a/api/logic/ndarray-not_equal/index.html +++ b/api/logic/ndarray-not_equal/index.html @@ -4,14 +4,14 @@ NDArray::not_equal | NumPower - - + +
Skip to main content

NDArray::not_equal

public static function not_equal(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray;

Performs an element-wise inequality comparison between two arrays and returns a new array of the same shape. The result will be 1 where the elements are not equal and 0 where they are equal.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/low-level-debug/ndarray-dump/index.html b/api/low-level-debug/ndarray-dump/index.html index 4002fe25..eee80e3a 100644 --- a/api/low-level-debug/ndarray-dump/index.html +++ b/api/low-level-debug/ndarray-dump/index.html @@ -4,13 +4,13 @@ NDArray::dump | NumPower - - + +
Skip to main content

NDArray::dump

public function dump() : void;

Dumps the internal information of the NDArray.


Examples

use \NDArray as nd;

$a = nd::array([[1, 2, 3, 4]]);
$a->dump();
Output
=================================================
NDArray.uuid 0
NDArray.dims [ 1 4 ]
NDArray.strides [ 16 4 ]
NDArray.ndim 2
NDArray.device CPU
NDArray.refcount 1
NDArray.descriptor.elsize 4
NDArray.descriptor.numElements 4
NDArray.descriptor.type float32
=================================================
- - + + \ No newline at end of file diff --git a/api/low-level-debug/ndarray-dumpDevices/index.html b/api/low-level-debug/ndarray-dumpDevices/index.html index 3aa87b2e..f3e76c82 100644 --- a/api/low-level-debug/ndarray-dumpDevices/index.html +++ b/api/low-level-debug/ndarray-dumpDevices/index.html @@ -4,13 +4,13 @@ NDArray::dumpDevices | NumPower - - + +
Skip to main content

NDArray::dumpDevices

public static function dumpDevices(): void;

Dumps information about available devices for GPU computation.


Examples

use \NDArray as nd;

nd::dumpDevices();
Output
==============================================================================
Number of CUDA devices: 1

---------------------------------------------------------------------------
Device 0: NVIDIA GeForce RTX 2070 SUPER
Compute capability: 7.5
Total global memory: 8358854656 bytes
Max threads per block: 1024
Max threads in X-dimension of block: 1024
Max threads in Y-dimension of block: 1024
Max threads in Z-dimension of block: 64
Max grid size in X-dimension: 2147483647
Max grid size in Y-dimension: 65535
Max grid size in Z-dimension: 65535
Max grid size in Z-dimension: 65535
Max grid size in Z-dimension: 65535
Max grid size in Z-dimension: 65535
---------------------------------------------------------------------------

==============================================================================
- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-atleast_1d/index.html b/api/manipulation/ndarray-atleast_1d/index.html index 9b2110a9..8ede2fe3 100644 --- a/api/manipulation/ndarray-atleast_1d/index.html +++ b/api/manipulation/ndarray-atleast_1d/index.html @@ -4,13 +4,13 @@ NDArray::atleast_1d | NumPower - - + +
Skip to main content

NDArray::atleast_1d

public static function atleast_1d(NDArray|array|float|int $array): NDArray;

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM).

- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-atleast_2d/index.html b/api/manipulation/ndarray-atleast_2d/index.html index 0fbd5590..6f412ce2 100644 --- a/api/manipulation/ndarray-atleast_2d/index.html +++ b/api/manipulation/ndarray-atleast_2d/index.html @@ -4,13 +4,13 @@ NDArray::atleast_2d | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-atleast_3d/index.html b/api/manipulation/ndarray-atleast_3d/index.html index 1aaa1ee2..2f6e4125 100644 --- a/api/manipulation/ndarray-atleast_3d/index.html +++ b/api/manipulation/ndarray-atleast_3d/index.html @@ -4,13 +4,13 @@ NDArray::atleast_3d | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-copy/index.html b/api/manipulation/ndarray-copy/index.html index d9038ee8..4713c06b 100644 --- a/api/manipulation/ndarray-copy/index.html +++ b/api/manipulation/ndarray-copy/index.html @@ -4,13 +4,13 @@ NDArray::copy | NumPower - - + +
Skip to main content

NDArray::copy

public static function copy(NDArray|array|float|int $a, int $device = NULL): NDArray;

Create a copy of array $a.

$device options

Default = NULL, copy on the same device as $a

  • 0 - CPU copy (same as $a->cpu());
  • 1 - GPU copy (same as $a->gpu());

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-expand_dims/index.html b/api/manipulation/ndarray-expand_dims/index.html index ff14f8d3..31633355 100644 --- a/api/manipulation/ndarray-expand_dims/index.html +++ b/api/manipulation/ndarray-expand_dims/index.html @@ -4,13 +4,13 @@ NDArray::expand_dims | NumPower - - + +
Skip to main content

NDArray::expand_dims

public static function expand_dims(NDArray|array|float|int $target, int|array $axis = NULL): NDArray;

Adds a new axis to the array at the specified position, thereby expanding its shape.


Parameters

$target

  • Type - NDArray | array | GdImage
  • Target array.

$axis

  • Type - array | int
  • This parameter specifies the position where the new axis (or axes) will be inserted within the expanded array.

Examples

use \NDArray as nd;

$a = nd::array([[1, 2], [3, 4]]);
echo nd::expand_dims($a, [0, 1]);
Output
[[[1, 2, 3, 4]]]

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM).

- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-flat/index.html b/api/manipulation/ndarray-flat/index.html index 4b0806ae..e1fa4508 100644 --- a/api/manipulation/ndarray-flat/index.html +++ b/api/manipulation/ndarray-flat/index.html @@ -4,13 +4,13 @@ NDArray::flatten | NumPower - - + +
Skip to main content

NDArray::flatten

public static function flatten(NDArray|array|float|int $a): NDArray;

Return a copy of the array $a into one dimension.


Parameters

$a

Type NDArray array scalar

  • Target array

Return

Type - NDArray

  • A copy of $a, with dimensions collapsed to 1-d, in the same device.

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-reshape/index.html b/api/manipulation/ndarray-reshape/index.html index 027071b9..d75b09bf 100644 --- a/api/manipulation/ndarray-reshape/index.html +++ b/api/manipulation/ndarray-reshape/index.html @@ -4,14 +4,14 @@ NDArray::reshape | NumPower - - + +
Skip to main content

NDArray::reshape

public static function reshape(NDArray|array|float|int $target, array $shape): NDArray|float|int;

Changes the shape of the NDArray.


Parameters

$shape

Type array

  • The new shape of the NDArray.

Return

Type - NDArray

  • Return a view of the array with shape $shape. To be compatible, the new shape must have the same amount of elements as the old one.
- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-shape/index.html b/api/manipulation/ndarray-shape/index.html index 570e8c11..ace65844 100644 --- a/api/manipulation/ndarray-shape/index.html +++ b/api/manipulation/ndarray-shape/index.html @@ -4,13 +4,13 @@ NDArray::shape | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-size/index.html b/api/manipulation/ndarray-size/index.html index d16f98a9..7d1fc72f 100644 --- a/api/manipulation/ndarray-size/index.html +++ b/api/manipulation/ndarray-size/index.html @@ -4,13 +4,13 @@ NDArray::size | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-toArray/index.html b/api/manipulation/ndarray-toArray/index.html index c15a3d8f..cdfbd72a 100644 --- a/api/manipulation/ndarray-toArray/index.html +++ b/api/manipulation/ndarray-toArray/index.html @@ -4,13 +4,13 @@ NDArray::toArray | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/manipulation/ndarray-transpose/index.html b/api/manipulation/ndarray-transpose/index.html index 97d6257a..0c98092b 100644 --- a/api/manipulation/ndarray-transpose/index.html +++ b/api/manipulation/ndarray-transpose/index.html @@ -4,13 +4,13 @@ NDArray::transpose | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/arithmetic/ndarray-add/index.html b/api/mathematical-functions/arithmetic/ndarray-add/index.html index a0031322..b10cc87e 100644 --- a/api/mathematical-functions/arithmetic/ndarray-add/index.html +++ b/api/mathematical-functions/arithmetic/ndarray-add/index.html @@ -4,13 +4,13 @@ NDArray::add | NumPower - - + +
Skip to main content

NDArray::add

public static function add(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray|float|int;

Add arguments element-wise


Parameters

$a $b

  • Type - NDArray | array | scalar
  • The arrays to be added, $a and $b must be of the same shape.

Return

NDArray

  • The sum of $a and $b

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.


Examples

use \NDArray as nd;

$a = new nd([[2, -2], [1, -1]]);
$b = new nd([[3, -3], [2, -1]]);

$c = $a + $b;

print_r($c);
[[5, -5],
[3, -2]]
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/arithmetic/ndarray-divide/index.html b/api/mathematical-functions/arithmetic/ndarray-divide/index.html index 904be290..c06da835 100644 --- a/api/mathematical-functions/arithmetic/ndarray-divide/index.html +++ b/api/mathematical-functions/arithmetic/ndarray-divide/index.html @@ -4,13 +4,13 @@ NDArray::divide | NumPower - - + +
Skip to main content

NDArray::divide

public static function divide(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray|float|int;

Return the division between two arrays element-wise


Parameters

$a $b

  • Type - NDArray | array | scalar
  • Input arrays

Return

NDArray

  • Array with the division between $a and $b element-wise

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.


Examples

use \NDArray as nd;

$c = nd::divide([5, 2, -3], [4, 3, 2]);

print_r($c);
[1.25, 0.666667, -1.5]
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/arithmetic/ndarray-mod/index.html b/api/mathematical-functions/arithmetic/ndarray-mod/index.html index eb0991f7..353a3148 100644 --- a/api/mathematical-functions/arithmetic/ndarray-mod/index.html +++ b/api/mathematical-functions/arithmetic/ndarray-mod/index.html @@ -4,14 +4,14 @@ NDArray::mod | NumPower - - + +
Skip to main content

NDArray::mod

public static function mod(NDArray|array|scalar $a, NDArray|array|scalar $b): NDArray|double;

Performs element-wise modulo operation between two arrays and returns a new array containing the result. The modulo operation calculates the remainder after division.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/arithmetic/ndarray-multiply/index.html b/api/mathematical-functions/arithmetic/ndarray-multiply/index.html index 66524143..a880d9da 100644 --- a/api/mathematical-functions/arithmetic/ndarray-multiply/index.html +++ b/api/mathematical-functions/arithmetic/ndarray-multiply/index.html @@ -4,13 +4,13 @@ NDArray::multiply | NumPower - - + +
Skip to main content

NDArray::multiply

public static function multiply(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray|float|int;

Multiply arrays element-wise


Parameters

$a $b

  • Type - NDArray | array | scalar
  • The arrays to be multiplied.

Return

NDArray

  • The multiplication of $a and $b element-wise

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.


Examples

use \NDArray as nd;

$a = new nd([[2, -2], [1, -1]]);
$b = new nd([[3, -3], [2, -1]]);

$c = $a * $b;

print_r($c);
[[6, 6],
[2, 1]]
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/arithmetic/ndarray-negative/index.html b/api/mathematical-functions/arithmetic/ndarray-negative/index.html index a4fc8c09..fef953fc 100644 --- a/api/mathematical-functions/arithmetic/ndarray-negative/index.html +++ b/api/mathematical-functions/arithmetic/ndarray-negative/index.html @@ -4,13 +4,13 @@ NDArray::negative | NumPower - - + +
Skip to main content

NDArray::negative

public static function negative(NDArray|array|float|int $a): NDArray|float|int;

Computes the element-wise negation (unary minus) of an array, returning a new array with the negation of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/arithmetic/ndarray-pow/index.html b/api/mathematical-functions/arithmetic/ndarray-pow/index.html index a0db5e30..85675246 100644 --- a/api/mathematical-functions/arithmetic/ndarray-pow/index.html +++ b/api/mathematical-functions/arithmetic/ndarray-pow/index.html @@ -4,13 +4,13 @@ NDArray::pow | NumPower - - + +
Skip to main content

NDArray::pow

public static function pow(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray|float|int;

Raises each element of an array $a to a specified power $b and returns a new array containing the result.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/arithmetic/ndarray-subtract/index.html b/api/mathematical-functions/arithmetic/ndarray-subtract/index.html index e8289936..846ec990 100644 --- a/api/mathematical-functions/arithmetic/ndarray-subtract/index.html +++ b/api/mathematical-functions/arithmetic/ndarray-subtract/index.html @@ -4,13 +4,13 @@ NDArray::subtract | NumPower - - + +
Skip to main content

NDArray::subtract

public static function subtract(NDArray|array|float|int $a, NDArray|array|float|int $b): NDArray|float|int;

Subtract two arrays element-wise


Parameters

$a $b

  • Type - NDArray | array | scalar
  • Input arrays

Return

NDArray

  • Element-wise subtraction of $a and $b element-wise

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.


Examples

use \NDArray as nd;

$a = new nd([[1, 2], [3, 4]]);
$b = new nd([[1, 2], [3, 4]]);

$c = nd::subtract($a, $b);

print_r($c);
[[0, 0],
[0, 0]]
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-exp/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-exp/index.html index 98aa7775..95bdec52 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-exp/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-exp/index.html @@ -4,14 +4,14 @@ NDArray::exp | NumPower - - + +
Skip to main content

NDArray::exp

public static function exp(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise exponential function of an array, returning a new array with each element raised to the power of $array.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2/index.html index 1e632d0e..1a25805e 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2/index.html @@ -4,14 +4,14 @@ NDArray::exp2 | NumPower - - + +
Skip to main content

NDArray::exp2

public static function exp2(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise 2 raised to the power of an array, returning a new array with each element raised to the power of 2.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1/index.html index f73b8604..23f20e6a 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1/index.html @@ -4,14 +4,14 @@ NDArray::expm1 | NumPower - - + +
Skip to main content

NDArray::expm1

public static function expm1(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise exponential minus one function, returning a new array with each element raised to the power of $array - 1.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-log/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-log/index.html index c820cab4..00353f9f 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-log/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-log/index.html @@ -4,14 +4,14 @@ NDArray::log | NumPower - - + +
Skip to main content

NDArray::log

public static function log(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise natural logarithm of an array, returning a new array with the natural logarithm of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-log10/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-log10/index.html index d5d7fefa..e709a4e6 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-log10/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-log10/index.html @@ -4,14 +4,14 @@ NDArray::log10 | NumPower - - + +
Skip to main content

NDArray::log10

public static function log10(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise base-10 logarithm of an array, returning a new array with the base-10 logarithm of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p/index.html index 95c42b60..ecde2895 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p/index.html @@ -4,14 +4,14 @@ NDArray::log1p | NumPower - - + +
Skip to main content

NDArray::log1p

public static function log1p(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise logarithm of one plus an array, returning a new array with the natural logarithm of each element plus one.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-log2/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-log2/index.html index d4a33f71..9df68e71 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-log2/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-log2/index.html @@ -4,14 +4,14 @@ NDArray::log2 | NumPower - - + +
Skip to main content

NDArray::log2

public static function log2(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise base-2 logarithm of an array, returning a new array with the base-2 logarithm of each element


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/exponents-and-logarithms/ndarray-logb/index.html b/api/mathematical-functions/exponents-and-logarithms/ndarray-logb/index.html index 7ae6abbb..da5eefd6 100644 --- a/api/mathematical-functions/exponents-and-logarithms/ndarray-logb/index.html +++ b/api/mathematical-functions/exponents-and-logarithms/ndarray-logb/index.html @@ -4,14 +4,14 @@ NDArray::logb | NumPower - - + +
Skip to main content

NDArray::logb

public static function logb(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise logarithm base b of an array, returning a new array with the logarithm base b of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/extrema-finding/ndarray-max/index.html b/api/mathematical-functions/extrema-finding/ndarray-max/index.html index 7c395ca1..e2242e03 100644 --- a/api/mathematical-functions/extrema-finding/ndarray-max/index.html +++ b/api/mathematical-functions/extrema-finding/ndarray-max/index.html @@ -4,13 +4,13 @@ NDArray::max | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/extrema-finding/ndarray-min/index.html b/api/mathematical-functions/extrema-finding/ndarray-min/index.html index 325635d1..831a63c0 100644 --- a/api/mathematical-functions/extrema-finding/ndarray-min/index.html +++ b/api/mathematical-functions/extrema-finding/ndarray-min/index.html @@ -4,13 +4,13 @@ NDArray::min | NumPower - - + +
Skip to main content
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/hyperbolic/ndarray-arccosh/index.html b/api/mathematical-functions/hyperbolic/ndarray-arccosh/index.html index f044199c..fa7be669 100644 --- a/api/mathematical-functions/hyperbolic/ndarray-arccosh/index.html +++ b/api/mathematical-functions/hyperbolic/ndarray-arccosh/index.html @@ -4,14 +4,14 @@ NDArray::arccosh | NumPower - - + +
Skip to main content

NDArray::arccosh

public static function arccosh(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise inverse hyperbolic cosine (arccosineh) of an array, returning a new array with the inverse hyperbolic cosine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/hyperbolic/ndarray-arcsinh/index.html b/api/mathematical-functions/hyperbolic/ndarray-arcsinh/index.html index 149434e3..b2354c57 100644 --- a/api/mathematical-functions/hyperbolic/ndarray-arcsinh/index.html +++ b/api/mathematical-functions/hyperbolic/ndarray-arcsinh/index.html @@ -4,14 +4,14 @@ NDArray::arcsinh | NumPower - - + +
Skip to main content

NDArray::arcsinh

public static function arcsinh(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise inverse hyperbolic sine (arcsineh) of an array, returning a new array with the inverse hyperbolic sine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/hyperbolic/ndarray-arctanh/index.html b/api/mathematical-functions/hyperbolic/ndarray-arctanh/index.html index fa24baf9..94a62508 100644 --- a/api/mathematical-functions/hyperbolic/ndarray-arctanh/index.html +++ b/api/mathematical-functions/hyperbolic/ndarray-arctanh/index.html @@ -4,14 +4,14 @@ NDArray::arctanh | NumPower - - + +
Skip to main content

NDArray::arctanh

public static function arctanh(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise inverse hyperbolic tangent (arctangenth) of an array, returning a new array with the inverse hyperbolic tangent of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/hyperbolic/ndarray-cosh/index.html b/api/mathematical-functions/hyperbolic/ndarray-cosh/index.html index f5e87139..edd11ea1 100644 --- a/api/mathematical-functions/hyperbolic/ndarray-cosh/index.html +++ b/api/mathematical-functions/hyperbolic/ndarray-cosh/index.html @@ -4,14 +4,14 @@ NDArray::cosh | NumPower - - + +
Skip to main content

NDArray::cosh

public static function cosh(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise hyperbolic cosine of an array, returning a new array with the hyperbolic cosine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/hyperbolic/ndarray-sinh/index.html b/api/mathematical-functions/hyperbolic/ndarray-sinh/index.html index 48d7ff8d..21d92df1 100644 --- a/api/mathematical-functions/hyperbolic/ndarray-sinh/index.html +++ b/api/mathematical-functions/hyperbolic/ndarray-sinh/index.html @@ -4,13 +4,13 @@ NDArray::sinh | NumPower - - + +
Skip to main content

NDArray::sinh

public static function sinh(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise hyperbolic sine of an array, returning a new array with the hyperbolic sine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/hyperbolic/ndarray-tanh/index.html b/api/mathematical-functions/hyperbolic/ndarray-tanh/index.html index 3fb3d8e5..ca77c198 100644 --- a/api/mathematical-functions/hyperbolic/ndarray-tanh/index.html +++ b/api/mathematical-functions/hyperbolic/ndarray-tanh/index.html @@ -4,14 +4,14 @@ NDArray::tanh | NumPower - - + +
Skip to main content

NDArray::tanh

public static function tanh(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise hyperbolic tangent of an array, returning a new array with the hyperbolic tangent of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/miscellaneous/ndarray-abs/index.html b/api/mathematical-functions/miscellaneous/ndarray-abs/index.html index 20865bd9..d839f7bd 100644 --- a/api/mathematical-functions/miscellaneous/ndarray-abs/index.html +++ b/api/mathematical-functions/miscellaneous/ndarray-abs/index.html @@ -4,13 +4,13 @@ NDArray::abs | NumPower - - + +
Skip to main content

NDArray::abs

public static function abs(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise absolute value of an array, returning a new array with non-negative elements.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/miscellaneous/ndarray-clip/index.html b/api/mathematical-functions/miscellaneous/ndarray-clip/index.html index aad06fd4..a6778194 100644 --- a/api/mathematical-functions/miscellaneous/ndarray-clip/index.html +++ b/api/mathematical-functions/miscellaneous/ndarray-clip/index.html @@ -4,14 +4,14 @@ NDArray::clip | NumPower - - + +
Skip to main content

NDArray::clip

public static function clip(NDArray|array|float|int $array, float $min, float $max): NDArray|float|int;

Clips the values of an array between a minimum and maximum value, returning a new array with the values clipped within the specified range.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/miscellaneous/ndarray-sign/index.html b/api/mathematical-functions/miscellaneous/ndarray-sign/index.html index d8ca104c..eee1c7c6 100644 --- a/api/mathematical-functions/miscellaneous/ndarray-sign/index.html +++ b/api/mathematical-functions/miscellaneous/ndarray-sign/index.html @@ -4,14 +4,14 @@ NDArray::sign | NumPower - - + +
Skip to main content

NDArray::sign

public static function sign(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise sign of an array, returning a new array with the sign of each element (1 for positive, -1 for negative, 0 for zero).


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/miscellaneous/ndarray-sinc/index.html b/api/mathematical-functions/miscellaneous/ndarray-sinc/index.html index 0d5e34fe..caf0eea6 100644 --- a/api/mathematical-functions/miscellaneous/ndarray-sinc/index.html +++ b/api/mathematical-functions/miscellaneous/ndarray-sinc/index.html @@ -4,14 +4,14 @@ NDArray::sinc | NumPower - - + +
Skip to main content

NDArray::sinc

public static function sinc(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise sinc function of an array, returning a new array with the sinc function evaluated for each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/miscellaneous/ndarray-sqrt/index.html b/api/mathematical-functions/miscellaneous/ndarray-sqrt/index.html index 7a2b7619..b9634888 100644 --- a/api/mathematical-functions/miscellaneous/ndarray-sqrt/index.html +++ b/api/mathematical-functions/miscellaneous/ndarray-sqrt/index.html @@ -4,13 +4,13 @@ NDArray::sqrt | NumPower - - + +
Skip to main content

NDArray::sqrt

public static function sqrt(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise square root of an array, returning a new array with the positive square root of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/miscellaneous/ndarray-square/index.html b/api/mathematical-functions/miscellaneous/ndarray-square/index.html index 5b24df7f..0bd265cf 100644 --- a/api/mathematical-functions/miscellaneous/ndarray-square/index.html +++ b/api/mathematical-functions/miscellaneous/ndarray-square/index.html @@ -4,13 +4,13 @@ NDArray::square | NumPower - - + +
Skip to main content

NDArray::square

public static function square(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise square of an array, returning a new array with each element squared.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/rounding/ndarray-ceil/index.html b/api/mathematical-functions/rounding/ndarray-ceil/index.html index ffb115e2..103a5ebc 100644 --- a/api/mathematical-functions/rounding/ndarray-ceil/index.html +++ b/api/mathematical-functions/rounding/ndarray-ceil/index.html @@ -4,14 +4,14 @@ NDArray::ceil | NumPower - - + +
Skip to main content

NDArray::ceil

public static function ceil(NDArray|array|float|int $array): NDArray|float|int;

Rounds the elements of an array to the nearest integer greater than or equal to the element, returning a new array with the elements rounded upwards.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/rounding/ndarray-fix/index.html b/api/mathematical-functions/rounding/ndarray-fix/index.html index 0966da5f..aecd5bc3 100644 --- a/api/mathematical-functions/rounding/ndarray-fix/index.html +++ b/api/mathematical-functions/rounding/ndarray-fix/index.html @@ -4,13 +4,13 @@ NDArray::fix | NumPower - - + +
Skip to main content

NDArray::fix

public static function fix(NDArray|array|float|int $array): NDArray|float|int;

Rounds the elements of an array towards zero, returning a new array with the elements rounded towards zero.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/rounding/ndarray-floor/index.html b/api/mathematical-functions/rounding/ndarray-floor/index.html index a0fbf745..c5e99790 100644 --- a/api/mathematical-functions/rounding/ndarray-floor/index.html +++ b/api/mathematical-functions/rounding/ndarray-floor/index.html @@ -4,14 +4,14 @@ NDArray::floor | NumPower - - + +
Skip to main content

NDArray::floor

public static function floor(NDArray|array|float|int $array): NDArray|float|int;

Rounds the elements of an array to the nearest integer less than or equal to the element, returning a new array with the elements rounded downwards.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/rounding/ndarray-rint/index.html b/api/mathematical-functions/rounding/ndarray-rint/index.html index 5b04d697..184ddfc9 100644 --- a/api/mathematical-functions/rounding/ndarray-rint/index.html +++ b/api/mathematical-functions/rounding/ndarray-rint/index.html @@ -4,14 +4,14 @@ NDArray::rint | NumPower - - + +
Skip to main content

NDArray::rint

public static function rint(NDArray|array|float|int $array): NDArray|float|int;

Rounds the elements of an array to the nearest integer, returning a new array with the elements rounded to the nearest integer.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/rounding/ndarray-round/index.html b/api/mathematical-functions/rounding/ndarray-round/index.html index f290c508..1260e2c8 100644 --- a/api/mathematical-functions/rounding/ndarray-round/index.html +++ b/api/mathematical-functions/rounding/ndarray-round/index.html @@ -4,14 +4,14 @@ NDArray::round | NumPower - - + +
Skip to main content

NDArray::round

public static function round(NDArray|array|float|int $array): NDArray|float|int;

Rounds the elements of an array to the nearest integer, returning a new array with the elements rounded to the nearest integer.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/rounding/ndarray-trunc/index.html b/api/mathematical-functions/rounding/ndarray-trunc/index.html index 2e8ac280..fc767579 100644 --- a/api/mathematical-functions/rounding/ndarray-trunc/index.html +++ b/api/mathematical-functions/rounding/ndarray-trunc/index.html @@ -4,13 +4,13 @@ NDArray::trunc | NumPower - - + +
Skip to main content

NDArray::trunc

public static function trunc(NDArray|array|float|int $array): NDArray|float|int;

Truncates the elements of an array towards zero, returning a new array with the elements truncated towards zero.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/sum-products-differences/ndarray-prod/index.html b/api/mathematical-functions/sum-products-differences/ndarray-prod/index.html index d06c8e3a..c97e815e 100644 --- a/api/mathematical-functions/sum-products-differences/ndarray-prod/index.html +++ b/api/mathematical-functions/sum-products-differences/ndarray-prod/index.html @@ -4,13 +4,13 @@ NDArray::prod | NumPower - - + +
Skip to main content

NDArray::prod

public static function prod(NDArray|array|float|int $a, ?int $axis = NULL): NDArray|float|int;

Calculates the product of all elements in the array over a given axis along which a product is performed.

The default, axis=NULL, will calculate the product of all the elements in the input array.

Parameters

$a

  • Type - NDArray|array|scalar
  • Input array

$axis

  • Type - NDArray|array|scalar
  • The axis to perform the product. If $axis is NULL, will calculate the product of all the elements of $a.

Return

NDArray

  • The product of $a. If $axis is not NULL, the specified axis is removed.

Examples

use \NDArray as nd;

$a = new nd([[1, 2], [3, 4]]);

$c = nd::prod($a);

print_r($c);
24
- - + + \ No newline at end of file diff --git a/api/mathematical-functions/sum-products-differences/ndarray-sum/index.html b/api/mathematical-functions/sum-products-differences/ndarray-sum/index.html index 5a072a1e..27ec7811 100644 --- a/api/mathematical-functions/sum-products-differences/ndarray-sum/index.html +++ b/api/mathematical-functions/sum-products-differences/ndarray-sum/index.html @@ -4,15 +4,15 @@ NDArray::sum | NumPower - - + +
Skip to main content

NDArray::sum

public static function sum(NDArray|array|float|int $a, ?int $axis = NULL): NDArray|float|int;

Calculates the sum of array elements along a given axis.


Parameters

$a

Type NDArray|array

  • The input array.

$axis

Type long

  • Specifies the axis along which the sum is performed. By default, (axis=NULL), the function sums all elements of the input array.

Return

Type - NDArray double

  • The function returns the summed array along the specified axis, resulting in an array with the same shape as the input array, but with the specified axis removed. If the input array is 0-dimensional or if axis=NULL, a scalar value is returned.

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-arccos/index.html b/api/mathematical-functions/trigonometric/ndarray-arccos/index.html index da34da65..298240fd 100644 --- a/api/mathematical-functions/trigonometric/ndarray-arccos/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-arccos/index.html @@ -4,14 +4,14 @@ NDArray::arccos | NumPower - - + +
Skip to main content

NDArray::arccos

public static function arccos(NDArray|array|float|int $array): NDArray|float|int ;

Calculates the element-wise inverse cosine (arccosine) of an array, returning a new array with the arccosine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-arcsin/index.html b/api/mathematical-functions/trigonometric/ndarray-arcsin/index.html index 3afa9d89..6a63c0cd 100644 --- a/api/mathematical-functions/trigonometric/ndarray-arcsin/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-arcsin/index.html @@ -4,14 +4,14 @@ NDArray::arcsin | NumPower - - + +
Skip to main content

NDArray::arcsin

public static function arcsin(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise inverse sine (arcsine) of an array, returning a new array with the arcsine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-arctan/index.html b/api/mathematical-functions/trigonometric/ndarray-arctan/index.html index af4279f6..960ac851 100644 --- a/api/mathematical-functions/trigonometric/ndarray-arctan/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-arctan/index.html @@ -4,14 +4,14 @@ NDArray::arctan | NumPower - - + +
Skip to main content

NDArray::arctan

public static function arctan(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise inverse tangent (arctangent) of an array, returning a new array with the arctangent of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-cos/index.html b/api/mathematical-functions/trigonometric/ndarray-cos/index.html index 293296a2..876adc13 100644 --- a/api/mathematical-functions/trigonometric/ndarray-cos/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-cos/index.html @@ -4,14 +4,14 @@ NDArray::cos | NumPower - - + +
Skip to main content

NDArray::cos

public static function cos(NDArray|array|float|int $array): NDArray|float|int;

Computes the element-wise cosine of an array, returning a new array with the cosine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-degrees/index.html b/api/mathematical-functions/trigonometric/ndarray-degrees/index.html index 2276c53a..0ea7c70f 100644 --- a/api/mathematical-functions/trigonometric/ndarray-degrees/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-degrees/index.html @@ -4,14 +4,14 @@ NDArray::degrees | NumPower - - + +
Skip to main content

NDArray::degrees

public static function degrees(NDArray|array|float|int $array): NDArray|float|int;

Converts the element-wise angle from radians to degrees, returning a new array with the angles converted to degrees.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-radians/index.html b/api/mathematical-functions/trigonometric/ndarray-radians/index.html index a7c645a1..4e786ead 100644 --- a/api/mathematical-functions/trigonometric/ndarray-radians/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-radians/index.html @@ -4,14 +4,14 @@ NDArray::radians | NumPower - - + +
Skip to main content

NDArray::radians

public static function radians(NDArray|array|float|int $array): NDArray|float|int;

Converts the element-wise angle from degrees to radians, returning a new array with the angles converted to radians.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-sin/index.html b/api/mathematical-functions/trigonometric/ndarray-sin/index.html index b7b6a9f2..9d58ff5f 100644 --- a/api/mathematical-functions/trigonometric/ndarray-sin/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-sin/index.html @@ -4,14 +4,14 @@ NDArray::sin | NumPower - - + +
Skip to main content

NDArray::sin

public static function sin(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise sine of an array, returning a new array with the sine of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/mathematical-functions/trigonometric/ndarray-tan/index.html b/api/mathematical-functions/trigonometric/ndarray-tan/index.html index 06f70a0a..82d33b3d 100644 --- a/api/mathematical-functions/trigonometric/ndarray-tan/index.html +++ b/api/mathematical-functions/trigonometric/ndarray-tan/index.html @@ -4,14 +4,14 @@ NDArray::tan | NumPower - - + +
Skip to main content

NDArray::tan

public static function tan(NDArray|array|float|int $array): NDArray|float|int;

Calculates the element-wise tangent of an array, returning a new array with the tangent of each element.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/random/ndarray-normal/index.html b/api/random/ndarray-normal/index.html index f78345d7..2191c134 100644 --- a/api/random/ndarray-normal/index.html +++ b/api/random/ndarray-normal/index.html @@ -4,14 +4,14 @@ NDArray::normal | NumPower - - + +
Skip to main content

NDArray::normal

public static function normal(array $size, float $loc = 0.0, float $scale = 1.0): NDArray;

Generates an array of random numbers from a normal distribution. The normal distribution, also known as the Gaussian distribution, is a continuous probability distribution that is symmetric and bell-shaped.

- - + + \ No newline at end of file diff --git a/api/random/ndarray-poisson/index.html b/api/random/ndarray-poisson/index.html index 524b6867..5a2d81cd 100644 --- a/api/random/ndarray-poisson/index.html +++ b/api/random/ndarray-poisson/index.html @@ -4,15 +4,15 @@ NDArray::poisson | NumPower - - + +
Skip to main content

NDArray::poisson

public static function poisson(array $size, float $lam = 1.0): NDArray;

Generates an array of random integers from a Poisson distribution. The Poisson distribution models the number of events occurring in fixed intervals of time or space, given the average rate of occurrence.

- - + + \ No newline at end of file diff --git a/api/random/ndarray-standard_normal/index.html b/api/random/ndarray-standard_normal/index.html index b1a11e2a..a2eb127c 100644 --- a/api/random/ndarray-standard_normal/index.html +++ b/api/random/ndarray-standard_normal/index.html @@ -4,15 +4,15 @@ NDArray::standard_normal | NumPower - - + +
Skip to main content

NDArray::standard_normal

public static function standard_normal(array $size): NDArray;

Generates an array of random numbers from the standard normal distribution. The standard normal distribution is a special case of the normal distribution with mean (μ) equal to 0 and standard deviation (σ) equal to 1.

- - + + \ No newline at end of file diff --git a/api/random/ndarray-uniform/index.html b/api/random/ndarray-uniform/index.html index dd9fc344..cb3c084c 100644 --- a/api/random/ndarray-uniform/index.html +++ b/api/random/ndarray-uniform/index.html @@ -4,14 +4,14 @@ NDArray::uniform | NumPower - - + +
Skip to main content

NDArray::uniform

public static function uniform(array $size, float $low = 0.0, float $high = 1.0): NDArray;

Generates an array of random numbers from a uniform distribution. The uniform distribution provides an equal probability for each value within a specified range.

- - + + \ No newline at end of file diff --git a/api/signal-processing/ndarray-convolve2d/index.html b/api/signal-processing/ndarray-convolve2d/index.html index 8c30ee22..b26b1436 100644 --- a/api/signal-processing/ndarray-convolve2d/index.html +++ b/api/signal-processing/ndarray-convolve2d/index.html @@ -4,13 +4,13 @@ NDArray::convolve2d | NumPower - - + +
Skip to main content

NDArray::convolve2d

public static function convolve2d(NDArray|array $a, NDArray|array $b, string $mode, string $boundary, float $fill_value = 0.0): NDArray;

Convolve two 2-dimensional arrays.

Convolve $a and $b with output size determined by $mode, and boundary conditions determined by $boundary and $fill_value.

$mode options

  • full - Full discrete linear convolution of the inputs
  • valid - The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either $a or $b must be at least as large as the other in every dimension.
  • same - The output is the same size as $a, centered with respect to the ‘full’ output.

$boundary options

  • fill - Pad input arrays with $fill_value
  • wrap - Circular boundary
  • symm - Symmetrical boundary

Parameters

$a $b

  • Type - NDArray | array | GdImage
  • The arrays to perform the convolution.

$mode

  • Type - string
  • The size of the output. Can be: full, valid and same

$boundary

  • Type - string
  • A flag indicating how to handle boundaries. Can be: fill, wrap and symm

Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/statistics/ndarray-average/index.html b/api/statistics/ndarray-average/index.html index d07b91c4..b0d1dcb1 100644 --- a/api/statistics/ndarray-average/index.html +++ b/api/statistics/ndarray-average/index.html @@ -4,14 +4,14 @@ NDArray::average | NumPower - - + +
Skip to main content

NDArray::average

public static function average(NDArray|array|float|int $array, NDArray|array|float|int|null $weights = NULL): float|int;

The weighted average of the elements in the array. It allows the user to specify weights for each element to be considered in the computation of the average.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/statistics/ndarray-mean/index.html b/api/statistics/ndarray-mean/index.html index 5895a7e1..2ceb1880 100644 --- a/api/statistics/ndarray-mean/index.html +++ b/api/statistics/ndarray-mean/index.html @@ -4,14 +4,14 @@ NDArray::mean | NumPower - - + +
Skip to main content

NDArray::mean

public static function mean(NDArray|array|float|int $a): float|int;

The arithmetic mean of the elements in the array. It computes the sum of all values and then divides it by the total number of elements in the array.

Same as calling nd::sum($a) / $a->size()


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/statistics/ndarray-median/index.html b/api/statistics/ndarray-median/index.html index 8736b2d9..462e651b 100644 --- a/api/statistics/ndarray-median/index.html +++ b/api/statistics/ndarray-median/index.html @@ -4,14 +4,14 @@ NDArray::median | NumPower - - + +
Skip to main content

NDArray::median

public static function median(NDArray|array|float|int $a): float|int;

The median of the elements in the array. It sorts the array, and if the number of elements is odd, it returns the middle value; if the number of elements is even, it returns the average of the two middle values


- - + + \ No newline at end of file diff --git a/api/statistics/ndarray-quantile/index.html b/api/statistics/ndarray-quantile/index.html index 8062de46..993b90ab 100644 --- a/api/statistics/ndarray-quantile/index.html +++ b/api/statistics/ndarray-quantile/index.html @@ -4,15 +4,15 @@ NDArray::quantile | NumPower - - + +
Skip to main content

NDArray::quantile

ublic static function quantile(NDArray|array|float|int $a, float|int $q): float|int;

Computes the specified quantile of the elements in the array. A quantile represents a particular value below which a given percentage of data falls. For example, the median is the 50th quantile.

- - + + \ No newline at end of file diff --git a/api/statistics/ndarray-std/index.html b/api/statistics/ndarray-std/index.html index 706c9861..a6142c75 100644 --- a/api/statistics/ndarray-std/index.html +++ b/api/statistics/ndarray-std/index.html @@ -4,15 +4,15 @@ NDArray::std | NumPower - - + +
Skip to main content

NDArray::std

public static function std(NDArray|array|float|int $a): float|int;

Calculates the standard deviation of the elements in the array. It is the square root of the variance and provides a measure of the amount of variation or dispersion in the data.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/api/statistics/ndarray-variance/index.html b/api/statistics/ndarray-variance/index.html index c7a6688f..bf777525 100644 --- a/api/statistics/ndarray-variance/index.html +++ b/api/statistics/ndarray-variance/index.html @@ -4,14 +4,14 @@ NDArray::variance | NumPower - - + +
Skip to main content

NDArray::variance

public static function variance(NDArray|array|float|int $array): float|int;

Calculates the variance of the elements in the array. It measures the average of the squared differences between each element and the mean.


Notes

tip

GPU SUPPORTED

This operation is supported by GPU (VRAM) and contains a custom CUDA kernel.

- - + + \ No newline at end of file diff --git a/assets/js/c4f5d8e4.7c8fe914.js b/assets/js/c4f5d8e4.6163696d.js similarity index 97% rename from assets/js/c4f5d8e4.7c8fe914.js rename to assets/js/c4f5d8e4.6163696d.js index 21b5c99a..653f45f7 100644 --- a/assets/js/c4f5d8e4.7c8fe914.js +++ b/assets/js/c4f5d8e4.6163696d.js @@ -1 +1 @@ -"use strict";(self.webpackChunknumpower=self.webpackChunknumpower||[]).push([[4195],{87123:(e,t,n)=>{n.r(t),n.d(t,{default:()=>h});var r=n(67294),a=n(86010),i=n(39960),o=n(52263),l=n(84173),s=n(87462);const m={features:"features_t9lD",featureSvg:"featureSvg_GfXr"},c=[{title:"Modern instructions and GPU support",description:r.createElement(r.Fragment,null,"NumPower was designed from the ground up to utilize AVX2, BLAS and the GPU to further improve performance.")},{title:"N-dimensional arrays",description:r.createElement(r.Fragment,null,"Inspired by NumPy, NumPower arrays are N-dimensional and have efficient methods for slicing and indexing N-dimensional arrays.")},{title:"Mathematical Tools",description:r.createElement(r.Fragment,null,"Count on dozens of high-performance mathematical operations, including: trigonometry, statistics, linear algebra and more.")},{title:"CUDA Support",description:r.createElement(r.Fragment,null,"NumPower was developed from scratch to operate with GPUs that support CUDA. You can easily store and perform operations using your GPU's memory and processor.")},{title:"Image processing",description:r.createElement(r.Fragment,null,"You can use GD images as input to perform various image processing. You can use slicing and convolution methods for example to crop or apply custom filters.")},{title:"Efficient memory usage",description:r.createElement(r.Fragment,null,"Initially implemented with single precision floats, NDArray allows you to work with more data with less memory. We plan to add more types in the near future.")}];function u(e){let{Svg:t,title:n,description:i}=e;return r.createElement("div",{className:(0,a.Z)("col col--4")},r.createElement("div",{className:"text--center"}),r.createElement("div",{className:"text--center padding-horiz--md"},r.createElement("h3",null,n),r.createElement("p",null,i)))}function d(){return r.createElement("section",{className:m.features},r.createElement("div",{className:"container"},r.createElement("div",{className:"row"},c.map(((e,t)=>r.createElement(u,(0,s.Z)({key:t},e)))))))}var p=n(92949);const g={heroBanner:"heroBanner_qdFl",buttons:"buttons_AeoN"};function f(){const{siteConfig:e}=(0,o.Z)(),{isDarkTheme:t}=(0,p.I)();return r.createElement("header",{className:(0,a.Z)("hero hero--primary",g.heroBanner)},r.createElement("div",{className:"container"},r.createElement("img",{src:t?"img/numpower.png":"img/numpower_white.png",width:"200px",style:{zIndex:2}}),r.createElement("h1",{className:"hero__title"},e.title),r.createElement("p",{className:"hero__subtitle"},e.tagline),r.createElement("div",{className:g.buttons},r.createElement(i.Z,{className:"button button--secondary button--lg",to:"/install/install"},"Install NumPower (0.5.1)"))))}function h(){const{siteConfig:e}=(0,o.Z)();return r.createElement(l.Z,{title:`${e.title}`,description:"Extension for numerical calculations and scientific computing made for PHP"},r.createElement(f,null),r.createElement("main",null,r.createElement(d,null)))}}}]); \ No newline at end of file +"use strict";(self.webpackChunknumpower=self.webpackChunknumpower||[]).push([[4195],{87123:(e,t,n)=>{n.r(t),n.d(t,{default:()=>h});var r=n(67294),a=n(86010),i=n(39960),o=n(52263),l=n(84173),s=n(87462);const m={features:"features_t9lD",featureSvg:"featureSvg_GfXr"},c=[{title:"Modern instructions and GPU support",description:r.createElement(r.Fragment,null,"NumPower was designed from the ground up to utilize AVX2, BLAS and the GPU to further improve performance.")},{title:"N-dimensional arrays",description:r.createElement(r.Fragment,null,"Inspired by NumPy, NumPower arrays are N-dimensional and have efficient methods for slicing and indexing N-dimensional arrays.")},{title:"Mathematical Tools",description:r.createElement(r.Fragment,null,"Count on dozens of high-performance mathematical operations, including: trigonometry, statistics, linear algebra and more.")},{title:"CUDA Support",description:r.createElement(r.Fragment,null,"NumPower was developed from scratch to operate with GPUs that support CUDA. You can easily store and perform operations using your GPU's memory and processor.")},{title:"Image processing",description:r.createElement(r.Fragment,null,"You can use GD images as input to perform various image processing. You can use slicing and convolution methods for example to crop or apply custom filters.")},{title:"Efficient memory usage",description:r.createElement(r.Fragment,null,"Initially implemented with single precision floats, NDArray allows you to work with more data with less memory. We plan to add more types in the near future.")}];function u(e){let{Svg:t,title:n,description:i}=e;return r.createElement("div",{className:(0,a.Z)("col col--4")},r.createElement("div",{className:"text--center"}),r.createElement("div",{className:"text--center padding-horiz--md"},r.createElement("h3",null,n),r.createElement("p",null,i)))}function d(){return r.createElement("section",{className:m.features},r.createElement("div",{className:"container"},r.createElement("div",{className:"row"},c.map(((e,t)=>r.createElement(u,(0,s.Z)({key:t},e)))))))}var p=n(92949);const g={heroBanner:"heroBanner_qdFl",buttons:"buttons_AeoN"};function f(){const{siteConfig:e}=(0,o.Z)(),{isDarkTheme:t}=(0,p.I)();return r.createElement("header",{className:(0,a.Z)("hero hero--primary",g.heroBanner)},r.createElement("div",{className:"container"},r.createElement("img",{src:t?"img/numpower.png":"img/numpower_white.png",width:"200px",style:{zIndex:2}}),r.createElement("h1",{className:"hero__title"},e.title),r.createElement("p",{className:"hero__subtitle"},e.tagline),r.createElement("div",{className:g.buttons},r.createElement(i.Z,{className:"button button--secondary button--lg",to:"/install/install"},"Install NumPower (0.5.2)"))))}function h(){const{siteConfig:e}=(0,o.Z)();return r.createElement(l.Z,{title:`${e.title}`,description:"Extension for numerical calculations and scientific computing made for PHP"},r.createElement(f,null),r.createElement("main",null,r.createElement(d,null)))}}}]); \ No newline at end of file diff --git a/assets/js/main.453ca7ef.js b/assets/js/main.d9caeb63.js similarity index 98% rename from assets/js/main.453ca7ef.js rename to assets/js/main.d9caeb63.js index 95509ebe..bf19ad72 100644 --- a/assets/js/main.453ca7ef.js +++ b/assets/js/main.d9caeb63.js @@ -1,2 +1,2 @@ -/*! For license information please see main.453ca7ef.js.LICENSE.txt */ -(self.webpackChunknumpower=self.webpackChunknumpower||[]).push([[179],{723:(e,t,n)=>{"use strict";n.d(t,{Z:()=>f});var a=n(67294),r=n(87462),i=n(68356),o=n.n(i),s=n(16887);const l={"00468944":[()=>Promise.all([n.e(532),n.e(9814)]).then(n.bind(n,10761)),"@site/api/devices-functions/ndarray-setdevice.mdx",10761],"011f3137":[()=>n.e(1746).then(n.t.bind(n,36359,19)),"~docs/tensor/version-current-metadata-prop-751.json",36359],"01aa281d":[()=>n.e(3840).then(n.bind(n,81701)),"@site/docs/tutorial-basics/2-iterating-ndarray.md",81701],"02a4c7a1":[()=>n.e(6901).then(n.bind(n,37612)),"@site/tensor/api/rounding/0-ceil.mdx",37612],"03d5aeaa":[()=>n.e(6171).then(n.bind(n,91082)),"@site/docs/2-image-processing.mdx",91082],"041a66ce":[()=>n.e(3830).then(n.bind(n,19200)),"@site/tensor/api/hyperbolic/0-cosh.mdx",19200],"081ac2e9":[()=>n.e(8005).then(n.bind(n,90818)),"@site/api/linear-algebra/ndarray-cholesky.mdx",90818],"082f6c33":[()=>n.e(6515).then(n.t.bind(n,17544,19)),"~docs/lattice/version-current-metadata-prop-751.json",17544],"091cc8fa":[()=>n.e(2131).then(n.t.bind(n,57438,19)),"/home/runner/work/numpower-docs/numpower-docs/.docusaurus/docusaurus-plugin-content-docs/api/plugin-route-context-module-100.json",57438],"0b9a4def":[()=>n.e(9739).then(n.bind(n,53313)),"@site/docs/tutorial-basics/0-ndarray-creation.md",53313],"0beed97c":[()=>Promise.all([n.e(532),n.e(639)]).then(n.bind(n,2758)),"@site/api/mathematical-functions/sum-products-differences/ndarray-prod.mdx",2758],"0c85f65b":[()=>n.e(5411).then(n.t.bind(n,37546,19)),"~docs/api/category-api-apisidebar-category-hyperbolic-9b1.json",37546],"0d085d21":[()=>n.e(9792).then(n.bind(n,53854)),"@site/tensor/api/arithmetics/1-divide.mdx",53854],"0e78f10f":[()=>n.e(3024).then(n.bind(n,1578)),"@site/lattice/api/layers/4-regularization-layers.mdx",1578],"1022770e":[()=>n.e(2746).then(n.bind(n,57790)),"@site/tensor/api/linalg/4-matrix_rank.mdx",57790],"1045403a":[()=>Promise.all([n.e(532),n.e(3412)]).then(n.bind(n,89100)),"@site/api/mathematical-functions/arithmetic/ndarray-subtract.mdx",89100],"1267e03b":[()=>n.e(4150).then(n.bind(n,84319)),"@site/tensor/api/exponents/0-exp.mdx",84319],"14eb3368":[()=>Promise.all([n.e(532),n.e(9817)]).then(n.bind(n,34228)),"@theme/DocCategoryGeneratedIndexPage",34228],"1679c888":[()=>n.e(6485).then(n.bind(n,65186)),"@site/lattice/api/optimizers/6-rmsprop.mdx",65186],"1753be7e":[()=>Promise.all([n.e(532),n.e(5523)]).then(n.bind(n,275)),"@site/api/mathematical-functions/hyperbolic/ndarray-sinh.mdx",275],17896441:[()=>Promise.all([n.e(532),n.e(2784),n.e(7918)]).then(n.bind(n,30230)),"@theme/DocItem",30230],"1869cdc2":[()=>n.e(9602).then(n.t.bind(n,87803,19)),"~docs/api/category-api-apisidebar-category-statistics-f29.json",87803],"199bcf44":[()=>n.e(2184).then(n.bind(n,53623)),"@site/api/manipulation/ndarray-reshape.mdx",53623],"1bb700a2":[()=>Promise.all([n.e(532),n.e(2597)]).then(n.bind(n,48563)),"@site/api/initializers/ndarray-identity.mdx",48563],"1be78505":[()=>Promise.all([n.e(532),n.e(9514)]).then(n.bind(n,19963)),"@theme/DocPage",19963],"1be8ad31":[()=>n.e(5771).then(n.bind(n,59557)),"@site/tensor/low-level/0-arithmetic-operand.mdx",59557],"1c27a122":[()=>n.e(7565).then(n.t.bind(n,33946,19)),"~docs/api/category-api-apisidebar-category-rounding-6c1.json",33946],"1c7c23b3":[()=>n.e(9791).then(n.bind(n,12601)),"@site/api/random/ndarray-uniform.mdx",12601],"1e514259":[()=>n.e(4260).then(n.bind(n,1768)),"@site/lattice/api/model/2-training.mdx",1768],"1f391b9e":[()=>Promise.all([n.e(532),n.e(2784),n.e(3085)]).then(n.bind(n,14247)),"@theme/MDXPage",14247],"204c9208":[()=>n.e(8288).then(n.t.bind(n,80532,19)),"~docs/lattice/category-lattice-apisidebar-category-layers-api-68f.json",80532],"20d34d7d":[()=>n.e(5369).then(n.bind(n,94161)),"@site/lattice/api/optimizers/1-sgd.mdx",94161],22016758:[()=>n.e(5169).then(n.t.bind(n,54909,19)),"~docs/api/category-api-apisidebar-category-signal-processing-e22.json",54909],"22baa0f1":[()=>Promise.all([n.e(532),n.e(4300)]).then(n.bind(n,78155)),"@site/api/mathematical-functions/trigonometric/ndarray-sin.mdx",78155],"22bf43c9":[()=>Promise.all([n.e(532),n.e(2e3)]).then(n.bind(n,32883)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p.mdx",32883],"231c8269":[()=>n.e(7240).then(n.bind(n,98300)),"@site/tensor/api/arithmetics/0-add.mdx",98300],"233139b6":[()=>Promise.all([n.e(532),n.e(3531)]).then(n.bind(n,68794)),"@site/api/mathematical-functions/trigonometric/ndarray-arctan.mdx",68794],23424687:[()=>Promise.all([n.e(532),n.e(1337)]).then(n.bind(n,2585)),"@site/api/mathematical-functions/trigonometric/ndarray-tan.mdx",2585],"234a0897":[()=>n.e(1995).then(n.bind(n,76001)),"@site/tensor/api/tensor/12-getTape.mdx",76001],"241a769d":[()=>n.e(8150).then(n.bind(n,19946)),"@site/tensor/api/tensor/1-detach.mdx",19946],"252529aa":[()=>n.e(5548).then(n.t.bind(n,57254,19)),"~docs/default/category-docs-tutorialsidebar-category-fundamentals-857.json",57254],"25dbe1ea":[()=>Promise.all([n.e(532),n.e(6836)]).then(n.bind(n,44887)),"@site/api/mathematical-functions/rounding/ndarray-trunc.mdx",44887],"27f7b93e":[()=>n.e(9152).then(n.t.bind(n,38655,19)),"~docs/api/category-api-apisidebar-category-low-level-debug-c58.json",38655],"28bb551d":[()=>n.e(9126).then(n.bind(n,48636)),"@site/api/statistics/ndarray-mean.mdx",48636],"294bc77b":[()=>n.e(4434).then(n.t.bind(n,70763,19)),"~docs/tensor/category-tensor-apisidebar-category-tensor-api-b4a.json",70763],"298f85a2":[()=>n.e(7824).then(n.t.bind(n,719,19)),"/home/runner/work/numpower-docs/numpower-docs/.docusaurus/docusaurus-plugin-content-docs/lattice/plugin-route-context-module-100.json",719],"29f9f21a":[()=>n.e(5382).then(n.bind(n,75666)),"@site/api/logic/ndarray-less.mdx",75666],"2ca5e148":[()=>n.e(8849).then(n.bind(n,61501)),"@site/api/random/ndarray-poisson.mdx",61501],"2d2437fe":[()=>Promise.all([n.e(532),n.e(6316)]).then(n.bind(n,30806)),"@site/api/mathematical-functions/hyperbolic/ndarray-arccosh.mdx",30806],"2fdb9bcc":[()=>n.e(5818).then(n.bind(n,75682)),"@site/tensor/api/tensor/2-getData.mdx",75682],"307cfb25":[()=>Promise.all([n.e(532),n.e(681)]).then(n.bind(n,46548)),"@site/api/linear-algebra/ndarray-inner.mdx",46548],"30b88277":[()=>n.e(2274).then(n.bind(n,95372)),"@site/api/logic/ndarray-greater_equal.mdx",95372],"30f8ae0e":[()=>n.e(1232).then(n.bind(n,26394)),"@site/api/linear-algebra/ndarray-lstsq.mdx",26394],"3271a505":[()=>n.e(5201).then(n.t.bind(n,83769,19)),"/home/runner/work/numpower-docs/numpower-docs/.docusaurus/docusaurus-plugin-content-docs/default/plugin-route-context-module-100.json",83769],"3288064a":[()=>Promise.all([n.e(532),n.e(9486)]).then(n.bind(n,33450)),"@site/api/mathematical-functions/miscellaneous/ndarray-clip.mdx",33450],"329232d1":[()=>n.e(5161).then(n.bind(n,40732)),"@site/api/manipulation/ndarray-size.mdx",40732],"345387ce":[()=>Promise.all([n.e(532),n.e(740)]).then(n.bind(n,7111)),"@site/api/devices-functions/ndarray-gpu.mdx",7111],"349ab49a":[()=>n.e(1915).then(n.bind(n,4500)),"@site/api/mathematical-functions/arithmetic/ndarray-negative.mdx",4500],"34a094f6":[()=>n.e(5616).then(n.bind(n,25623)),"@site/install/0-install.mdx",25623],"3594638c":[()=>n.e(4574).then(n.bind(n,22335)),"@site/tensor/api/arithmetics/3-multiply.mdx",22335],"384e0dae":[()=>n.e(4918).then(n.bind(n,68509)),"@site/tensor/api/exponents/4-log10.mdx",68509],"3870d80f":[()=>n.e(6847).then(n.bind(n,55946)),"@site/api/initializers/ndarray-ones.mdx",55946],"393be207":[()=>n.e(7414).then(n.bind(n,53123)),"@site/src/pages/markdown-page.md",53123],"39ed6298":[()=>n.e(801).then(n.bind(n,18731)),"@site/lattice/getting-started/0-getting-started.mdx",18731],"3a3ff76d":[()=>n.e(2282).then(n.bind(n,63907)),"@site/api/linear-algebra/ndarray-matmul.mdx",63907],"3beb734c":[()=>n.e(9753).then(n.bind(n,74511)),"@site/tensor/api/hyperbolic/7-tanh.mdx",74511],"3cd0ed84":[()=>n.e(6904).then(n.bind(n,62986)),"@site/tensor/api/hyperbolic/1-arccosh.mdx",62986],"3d3f0587":[()=>n.e(1195).then(n.bind(n,24852)),"@site/api/linear-algebra/ndarray-eig.mdx",24852],"3f079ad4":[()=>n.e(5387).then(n.t.bind(n,23583,19)),"~docs/api/category-api-apisidebar-category-miscellaneous-85c.json",23583],"3f708c8b":[()=>n.e(4996).then(n.bind(n,74294)),"@site/lattice/api/layers/6-merging-layers.mdx",74294],41048078:[()=>n.e(697).then(n.bind(n,16377)),"@site/tensor/api/arithmetics/8-sum_axis.mdx",16377],"41b87b52":[()=>n.e(2387).then(n.bind(n,55310)),"@site/tensor/api/tensor/11-resetGradients.mdx",55310],"430c1422":[()=>n.e(1685).then(n.bind(n,8738)),"@site/api/linear-algebra/ndarray-det.mdx",8738],"431526b1":[()=>n.e(9390).then(n.t.bind(n,9020,19)),"~docs/tensor/category-tensor-apisidebar-category-numpower-autograd-025.json",9020],"434b63fe":[()=>n.e(6545).then(n.bind(n,87496)),"@site/tensor/api/arithmetics/6-subtract.mdx",87496],"43873d39":[()=>n.e(265).then(n.bind(n,29072)),"@site/tensor/api/hyperbolic/4-sinc.mdx",29072],"4393f10f":[()=>n.e(9262).then(n.bind(n,44569)),"@site/tensor/api/tensor/8-isScalar.mdx",44569],"43bef183":[()=>n.e(1775).then(n.bind(n,82100)),"@site/tensor/api/arithmetics/4-negative.mdx",82100],"43cec82c":[()=>n.e(355).then(n.t.bind(n,74387,19)),"/home/runner/work/numpower-docs/numpower-docs/.docusaurus/docusaurus-plugin-content-docs/install/plugin-route-context-module-100.json",74387],"43e6a2a9":[()=>n.e(8124).then(n.bind(n,64407)),"@site/tensor/api/manipulation/0-reshape.mdx",64407],"4430072a":[()=>Promise.all([n.e(532),n.e(8243)]).then(n.bind(n,53855)),"@site/api/mathematical-functions/trigonometric/ndarray-radians.mdx",53855],"44ad5493":[()=>n.e(818).then(n.t.bind(n,41958,19)),"~docs/api/category-api-apisidebar-category-image-processing-de0.json",41958],45267777:[()=>n.e(1508).then(n.bind(n,70787)),"@site/api/logic/ndarray-all.mdx",70787],"467613ad":[()=>Promise.all([n.e(532),n.e(5592)]).then(n.bind(n,68612)),"@site/api/low-level-debug/ndarray-dumpDevices.mdx",68612],"479764b0":[()=>n.e(584).then(n.t.bind(n,91831,19)),"~docs/tensor/category-tensor-apisidebar-category-rounding-1c7.json",91831],"479e95af":[()=>n.e(7325).then(n.bind(n,39130)),"@site/api/statistics/ndarray-std.mdx",39130],"4bd2dc06":[()=>n.e(1851).then(n.t.bind(n,52777,19)),"~docs/api/category-api-apisidebar-category-devices-functions-86f.json",52777],"4c3c3b84":[()=>n.e(8884).then(n.bind(n,43978)),"@site/lattice/api/layers/2-pooling-layers.mdx",43978],"504ce97c":[()=>n.e(5933).then(n.bind(n,72765)),"@site/tensor/api/exponents/5-log1p.mdx",72765],"50f2e101":[()=>n.e(6167).then(n.t.bind(n,12903,19)),"~docs/api/category-api-apisidebar-category-initializers-c22.json",12903],"51bd476a":[()=>n.e(6200).then(n.bind(n,77562)),"@site/docs/tutorial-basics/1-ndarray-indexing.md",77562],53325300:[()=>n.e(17).then(n.bind(n,79247)),"@site/api/mathematical-functions/extrema-finding/ndarray-max.mdx",79247],"55c6453f":[()=>n.e(1864).then(n.t.bind(n,86186,19)),"~docs/tensor/category-tensor-apisidebar-category-arithmetics-f8c.json",86186],"5697b9ec":[()=>Promise.all([n.e(532),n.e(9749)]).then(n.bind(n,60151)),"@site/api/mathematical-functions/miscellaneous/ndarray-abs.mdx",60151],"56f85cda":[()=>n.e(675).then(n.bind(n,25595)),"@site/lattice/api/optimizers/5-nadam.mdx",25595],"578040a5":[()=>n.e(4273).then(n.bind(n,27309)),"@site/docs/1-ndarray.md",27309],"59b7b7fe":[()=>n.e(8348).then(n.bind(n,83403)),"@site/tensor/api/trigonometric/1-tan.mdx",83403],"5a0fa9bc":[()=>n.e(1466).then(n.bind(n,2708)),"@site/lattice/api/model/3-persistence.mdx",2708],"5e9f5e1a":[()=>Promise.resolve().then(n.bind(n,36809)),"@generated/docusaurus.config",36809],"5f1eb444":[()=>n.e(5223).then(n.bind(n,64776)),"@site/lattice/intro/2-lattice-install.mdx",64776],"5f5c3424":[()=>n.e(7236).then(n.t.bind(n,1706,19)),"~docs/lattice/category-lattice-apisidebar-category-losses-api-e52.json",1706],"5f66b9e0":[()=>Promise.all([n.e(532),n.e(8525)]).then(n.bind(n,29144)),"@site/api/mathematical-functions/hyperbolic/ndarray-arctanh.mdx",29144],"5ff264e8":[()=>n.e(3151).then(n.bind(n,4123)),"@site/tensor/api/rounding/1-clip.mdx",4123],"61b3f8b0":[()=>n.e(7940).then(n.t.bind(n,42959,19)),"~docs/lattice/category-lattice-apisidebar-category-optimizers-api-76a.json",42959],"622a3194":[()=>n.e(4785).then(n.bind(n,89407)),"@site/api/manipulation/ndarray-toArray.mdx",89407],"62663a69":[()=>Promise.all([n.e(532),n.e(4181)]).then(n.bind(n,25644)),"@site/api/mathematical-functions/miscellaneous/ndarray-sqrt.mdx",25644],"627b33dd":[()=>n.e(2660).then(n.bind(n,27791)),"@site/tensor/api/arithmetics/5-power.mdx",27791],"62942c65":[()=>Promise.all([n.e(532),n.e(2510)]).then(n.bind(n,65297)),"@site/api/mathematical-functions/arithmetic/ndarray-multiply.mdx",65297],"62ae31b5":[()=>Promise.all([n.e(532),n.e(9869)]).then(n.bind(n,72274)),"@site/api/mathematical-functions/arithmetic/ndarray-mod.mdx",72274],"654eb3dd":[()=>n.e(6721).then(n.t.bind(n,19936,19)),"~docs/api/version-current-metadata-prop-751.json",19936],"65792e36":[()=>Promise.all([n.e(532),n.e(6490)]).then(n.bind(n,62628)),"@site/api/mathematical-functions/hyperbolic/ndarray-tanh.mdx",62628],"6599d15d":[()=>n.e(1541).then(n.bind(n,53797)),"@site/tensor/api/tensor/6-grad.mdx",53797],"66b03011":[()=>n.e(8664).then(n.bind(n,47116)),"@site/tensor/nn/1-activations.mdx",47116],"66ce9342":[()=>n.e(6811).then(n.t.bind(n,83208,19)),"~docs/tensor/category-tensor-apisidebar-category-hyperbolic-operations-d16.json",83208],"67090df3":[()=>n.e(8774).then(n.t.bind(n,70057,19)),"~docs/lattice/category-lattice-apisidebar-category-numpower-lattice-4b4.json",70057],"68104b9f":[()=>Promise.all([n.e(532),n.e(5012)]).then(n.bind(n,70266)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1.mdx",70266],"6a0b1a4c":[()=>n.e(9720).then(n.bind(n,79387)),"@site/tensor/api/hyperbolic/3-arcsinh.mdx",79387],"6aec8b61":[()=>n.e(6873).then(n.bind(n,60343)),"@site/api/linear-algebra/ndarray-svd.mdx",60343],"6d05f1c8":[()=>Promise.all([n.e(532),n.e(1166)]).then(n.bind(n,67925)),"@site/api/mathematical-functions/miscellaneous/ndarray-square.mdx",67925],"6dd7dbf4":[()=>Promise.all([n.e(532),n.e(5750)]).then(n.bind(n,96413)),"@site/api/mathematical-functions/rounding/ndarray-floor.mdx",96413],"6ff5c6f1":[()=>n.e(9319).then(n.t.bind(n,62785,19)),"~docs/tensor/category-tensor-apisidebar-category-neural-network-module-ab6.json",62785],"70fa37b6":[()=>n.e(3338).then(n.t.bind(n,20329,19)),"~docs/tensor/category-tensor-apisidebar-category-api-fc4.json",20329],"7131f8b5":[()=>n.e(547).then(n.bind(n,60849)),"@site/api/manipulation/ndarray-transpose.mdx",60849],"71f4d61f":[()=>n.e(7219).then(n.bind(n,45106)),"@site/lattice/api/losses/0-probabilistic.mdx",45106],"720ec61c":[()=>n.e(7561).then(n.bind(n,47378)),"@site/api/random/ndarray-normal.mdx",47378],"739047bc":[()=>n.e(1041).then(n.t.bind(n,25420,19)),"~docs/api/category-api-apisidebar-category-arithmetics-f14.json",25420],"74e3fe4d":[()=>Promise.all([n.e(532),n.e(7597)]).then(n.bind(n,33859)),"@site/api/mathematical-functions/trigonometric/ndarray-arcsin.mdx",33859],"756f2099":[()=>n.e(8447).then(n.bind(n,806)),"@site/tensor/api/hyperbolic/6-arctanh.mdx",806],"75df75a2":[()=>Promise.all([n.e(532),n.e(1633)]).then(n.bind(n,77893)),"@site/api/mathematical-functions/trigonometric/ndarray-cos.mdx",77893],"76f0791c":[()=>n.e(4474).then(n.bind(n,60575)),"@site/tensor/api/linalg/7-svd.mdx",60575],"772efa6d":[()=>Promise.all([n.e(532),n.e(8463)]).then(n.bind(n,66841)),"@site/api/mathematical-functions/hyperbolic/ndarray-arcsinh.mdx",66841],"78ba0e5d":[()=>n.e(1646).then(n.bind(n,66742)),"@site/tensor/intro/1-autograd-intro.md",66742],"790b0151":[()=>Promise.all([n.e(532),n.e(9807)]).then(n.bind(n,82486)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-log10.mdx",82486],79600575:[()=>n.e(783).then(n.t.bind(n,61838,19)),"~docs/lattice/category-lattice-apisidebar-category-getting-started-with-lattice-fc7.json",61838],"79cc8324":[()=>n.e(2026).then(n.bind(n,50070)),"@site/tensor/api/tensor/3-isGPU.mdx",50070],"7a35365d":[()=>n.e(3600).then(n.t.bind(n,23661,19)),"~docs/api/category-api-apisidebar-category-manipulation-306.json",23661],"7a78826d":[()=>n.e(6268).then(n.bind(n,9775)),"@site/lattice/api/optimizers/3-adadelta.mdx",9775],"7be37b0f":[()=>n.e(8434).then(n.bind(n,30250)),"@site/api/manipulation/ndarray-copy.mdx",30250],"7c37910f":[()=>Promise.all([n.e(532),n.e(550)]).then(n.bind(n,17578)),"@site/api/mathematical-functions/rounding/ndarray-ceil.mdx",17578],"7d0db417":[()=>n.e(6406).then(n.bind(n,32405)),"@site/tensor/api/exponents/2-expm1.mdx",32405],"7d7554f5":[()=>n.e(1892).then(n.bind(n,71669)),"@site/tensor/api/tensor/0-toArray.mdx",71669],"8438bdf3":[()=>n.e(4971).then(n.bind(n,37605)),"@site/api/initializers/ndarray-zeros.mdx",37605],"84c2c8d1":[()=>Promise.all([n.e(532),n.e(5356)]).then(n.bind(n,85404)),"@site/api/mathematical-functions/rounding/ndarray-rint.mdx",85404],"852c20b2":[()=>Promise.all([n.e(532),n.e(6777)]).then(n.bind(n,75642)),"@site/api/mathematical-functions/miscellaneous/ndarray-sign.mdx",75642],"8648a568":[()=>n.e(9803).then(n.bind(n,51511)),"@site/tensor/api/trigonometric/6-arctan.mdx",51511],"86621d3e":[()=>n.e(7808).then(n.bind(n,67333)),"@site/api/linear-algebra/ndarray-inv.mdx",67333],"89d1bd12":[()=>n.e(5472).then(n.bind(n,93910)),"@site/lattice/api/optimizers/0-adam.mdx",93910],"8a852a72":[()=>n.e(8399).then(n.bind(n,81777)),"@site/tensor/api/hyperbolic/5-arctan2.mdx",81777],"8c2cfd23":[()=>n.e(5184).then(n.bind(n,39326)),"@site/tensor/api/linalg/5-norm.mdx",39326],"8d532773":[()=>Promise.all([n.e(532),n.e(8859)]).then(n.bind(n,74623)),"@site/api/manipulation/ndarray-expand_dims.mdx",74623],"8dc592e8":[()=>n.e(5697).then(n.bind(n,7925)),"@site/api/logic/ndarray-not_equal.mdx",7925],"8fe06aff":[()=>Promise.all([n.e(532),n.e(4882)]).then(n.bind(n,59437)),"@site/api/manipulation/ndarray-flat.mdx",59437],"8feebb96":[()=>n.e(8698).then(n.t.bind(n,15745,19)),"/home/runner/work/numpower-docs/numpower-docs/.docusaurus/docusaurus-plugin-content-pages/default/plugin-route-context-module-100.json",15745],"901ebc33":[()=>n.e(6818).then(n.bind(n,87400)),"@site/api/statistics/ndarray-variance.mdx",87400],"935f2afb":[()=>n.e(53).then(n.t.bind(n,1109,19)),"~docs/default/version-current-metadata-prop-751.json",1109],"9401a822":[()=>Promise.all([n.e(532),n.e(7028)]).then(n.bind(n,12203)),"@site/api/manipulation/ndarray-atleast_2d.mdx",12203],"968348a7":[()=>n.e(4425).then(n.bind(n,99970)),"@site/api/logic/ndarray-less_equal.mdx",99970],"974f79c3":[()=>Promise.all([n.e(532),n.e(4817)]).then(n.bind(n,86448)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-logb.mdx",86448],"991d3e07":[()=>Promise.all([n.e(532),n.e(6121)]).then(n.bind(n,73381)),"@site/api/manipulation/ndarray-atleast_3d.mdx",73381],"991f4ce5":[()=>Promise.all([n.e(532),n.e(5565)]).then(n.bind(n,13266)),"@site/api/initializers/ndarray-array.mdx",13266],"99f5f148":[()=>n.e(9628).then(n.bind(n,5986)),"@site/tensor/api/exponents/1-exp2.mdx",5986],"9b32d87e":[()=>n.e(716).then(n.bind(n,10290)),"@site/api/linear-algebra/ndarray-matrixrank.mdx",10290],"9e06a3b3":[()=>n.e(7094).then(n.t.bind(n,40111,19)),"~docs/api/category-api-apisidebar-category-linear-algebra-50c.json",40111],"9e46a43e":[()=>n.e(9996).then(n.bind(n,67697)),"@site/api/statistics/ndarray-median.mdx",67697],a159e2e8:[()=>n.e(768).then(n.bind(n,83170)),"@site/lattice/api/layers/0-core.mdx",83170],a3f2d1d9:[()=>n.e(2427).then(n.bind(n,64604)),"@site/tensor/api/tensor/4-getName.mdx",64604],a8949bbd:[()=>n.e(5495).then(n.t.bind(n,80096,19)),"~docs/api/category-api-apisidebar-category-exponents-and-logarithms-518.json",80096],a8acfe78:[()=>n.e(6182).then(n.bind(n,43987)),"@site/api/statistics/ndarray-average.mdx",43987],a923091a:[()=>n.e(5496).then(n.bind(n,89905)),"@site/tensor/api/exponents/6-log2.mdx",89905],ab8e9a44:[()=>Promise.all([n.e(532),n.e(2937)]).then(n.bind(n,17960)),"@site/api/mathematical-functions/rounding/ndarray-round.mdx",17960],ae3b56cb:[()=>n.e(8972).then(n.bind(n,8132)),"@site/tensor/api/hyperbolic/2-sinh.mdx",8132],b01db995:[()=>Promise.all([n.e(532),n.e(8231)]).then(n.bind(n,63297)),"@site/api/devices-functions/ndarray-isgpu.mdx",63297],b12701e7:[()=>n.e(7980).then(n.t.bind(n,93095,19)),"~docs/lattice/category-lattice-apisidebar-category-model-api-01a.json",93095],b1c4a67f:[()=>n.e(9203).then(n.bind(n,19801)),"@site/tensor/api/tensor/7-graph.mdx",19801],b21d6224:[()=>n.e(9672).then(n.bind(n,33617)),"@site/lattice/intro/1-lattice-intro.mdx",33617],b4732092:[()=>n.e(6628).then(n.t.bind(n,6266,19)),"~docs/tensor/category-tensor-apisidebar-category-low-level-classes-and-operations-e93.json",6266],b5cbcb6d:[()=>Promise.all([n.e(532),n.e(9270)]).then(n.bind(n,68771)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2.mdx",68771],b79d7685:[()=>n.e(9007).then(n.bind(n,48870)),"@site/api/logic/ndarray-equal.mdx",48870],b8148d08:[()=>n.e(7991).then(n.t.bind(n,12115,19)),"~docs/lattice/category-lattice-apisidebar-category-api-14f.json",12115],b8a4862b:[()=>n.e(6023).then(n.bind(n,67677)),"@site/tensor/api/linalg/6-outer.mdx",67677],b9a1c334:[()=>n.e(7557).then(n.bind(n,51599)),"@site/api/initializers/ndarray-arange.mdx",51599],bcf62e12:[()=>n.e(2990).then(n.bind(n,92151)),"@site/api/linear-algebra/ndarray-qr.mdx",92151],be4698f6:[()=>n.e(2431).then(n.bind(n,34100)),"@site/api/linear-algebra/ndarray-trace.mdx",34100],be86dea3:[()=>n.e(7079).then(n.bind(n,2640)),"@site/tensor/api/arithmetics/7-sum.mdx",2640],bea4341e:[()=>n.e(2714).then(n.bind(n,1026)),"@site/tensor/api/linalg/2-det.mdx",1026],bf4f4da7:[()=>Promise.all([n.e(532),n.e(5718)]).then(n.bind(n,68626)),"@site/api/mathematical-functions/arithmetic/ndarray-divide.mdx",68626],c415d946:[()=>n.e(625).then(n.bind(n,64809)),"@site/lattice/api/model/1-stack.mdx",64809],c4389e37:[()=>n.e(328).then(n.bind(n,15189)),"@site/api/linear-algebra/ndarray-cond.mdx",15189],c4481c9d:[()=>n.e(3420).then(n.bind(n,76118)),"@site/lattice/api/optimizers/2-adagrad.mdx",76118],c4c2c1a9:[()=>n.e(7608).then(n.t.bind(n,21343,19)),"~docs/api/category-api-apisidebar-category-extrema-finding-ef3.json",21343],c4f5d8e4:[()=>Promise.all([n.e(532),n.e(4195)]).then(n.bind(n,87123)),"@site/src/pages/index.js",87123],c6608bc5:[()=>n.e(4621).then(n.t.bind(n,35913,19)),"~docs/tensor/category-tensor-apisidebar-category-exponential-and-logarithms-3df.json",35913],c8ade746:[()=>Promise.all([n.e(532),n.e(4651)]).then(n.bind(n,46017)),"@site/api/mathematical-functions/arithmetic/ndarray-add.mdx",46017],c8b6ada5:[()=>n.e(6459).then(n.bind(n,20011)),"@site/tensor/api/linalg/0-matmul.mdx",20011],c929d0c4:[()=>n.e(2558).then(n.bind(n,33277)),"@site/api/random/ndarray-standard_normal.mdx",33277],c9cbe39a:[()=>Promise.all([n.e(532),n.e(1095)]).then(n.bind(n,3833)),"@site/api/mathematical-functions/miscellaneous/ndarray-sinc.mdx",3833],ca8be229:[()=>n.e(9765).then(n.bind(n,64916)),"@site/api/statistics/ndarray-quantile.mdx",64916],ca98a49a:[()=>n.e(8653).then(n.bind(n,15886)),"@site/tensor/api/trigonometric/0-sin.mdx",15886],caf07d56:[()=>n.e(7164).then(n.bind(n,4737)),"@site/tensor/nn/0-losses.mdx",4737],cb0a4556:[()=>n.e(6517).then(n.t.bind(n,77316,19)),"~docs/api/category-api-apisidebar-category-sums-products-differences-958.json",77316],cc0f4df3:[()=>Promise.all([n.e(532),n.e(8262)]).then(n.bind(n,98660)),"@site/api/mathematical-functions/hyperbolic/ndarray-cosh.mdx",98660],cc8ba7af:[()=>n.e(7907).then(n.bind(n,34314)),"@site/docs/tutorial-basics/4-gpu.md",34314],cc9ac8e1:[()=>n.e(8189).then(n.bind(n,8536)),"@site/docs/tutorial-basics/3-broadcast.md",8536],ce51130e:[()=>n.e(6042).then(n.bind(n,26092)),"@site/api/logic/ndarray-allclose.mdx",26092],cf13ebfd:[()=>Promise.all([n.e(532),n.e(7747)]).then(n.bind(n,12549)),"@site/api/mathematical-functions/arithmetic/ndarray-pow.mdx",12549],cf9a5749:[()=>n.e(6858).then(n.t.bind(n,85838,19)),"/home/runner/work/numpower-docs/numpower-docs/.docusaurus/docusaurus-plugin-content-docs/tensor/plugin-route-context-module-100.json",85838],cf9eb8c2:[()=>n.e(1767).then(n.bind(n,60806)),"@site/tensor/api/tensor/10-requireGrad.mdx",60806],cfcda8ca:[()=>n.e(5801).then(n.bind(n,34932)),"@site/lattice/api/optimizers/4-adafactor.mdx",34932],d0df5cde:[()=>n.e(2259).then(n.bind(n,48669)),"@site/lattice/api/losses/1-regression.mdx",48669],d30a98c3:[()=>n.e(2384).then(n.bind(n,1632)),"@site/tensor/api/linalg/1-cond.mdx",1632],d3937864:[()=>n.e(8896).then(n.t.bind(n,8469,19)),"~docs/api/category-api-apisidebar-category-trigonometric-895.json",8469],d3a6bc98:[()=>n.e(2230).then(n.bind(n,64997)),"@site/api/linear-algebra/ndarray-lu.mdx",64997],d447b34c:[()=>n.e(4133).then(n.t.bind(n,49881,19)),"~docs/api/category-api-apisidebar-category-logic-functions-1f8.json",49881],d4a6af7b:[()=>n.e(1192).then(n.t.bind(n,62239,19)),"~docs/tensor/category-tensor-apisidebar-category-linear-algebra-5cf.json",62239],d556eaa8:[()=>n.e(1526).then(n.bind(n,52991)),"@site/tensor/api/arithmetics/2-mod.mdx",52991],d6948ac0:[()=>n.e(8339).then(n.t.bind(n,2792,19)),"~docs/install/version-current-metadata-prop-751.json",2792],d802b629:[()=>n.e(1048).then(n.t.bind(n,92857,19)),"~docs/tensor/category-tensor-apisidebar-category-manipulation-ead.json",92857],d8d4be9c:[()=>n.e(7488).then(n.t.bind(n,85759,19)),"~docs/api/category-api-apisidebar-category-math-635.json",85759],dddc01aa:[()=>n.e(540).then(n.bind(n,98651)),"@site/tensor/intro/3-basic-usage.mdx",98651],de6064c2:[()=>n.e(5338).then(n.bind(n,85785)),"@site/tensor/api/trigonometric/7-radians.mdx",85785],dfe5d6b9:[()=>n.e(8642).then(n.bind(n,58212)),"@site/api/manipulation/ndarray-shape.mdx",58212],e040b992:[()=>n.e(9964).then(n.bind(n,71197)),"@site/tensor/api/linalg/3-dot.mdx",71197],e051f58c:[()=>n.e(5674).then(n.bind(n,57893)),"@site/tensor/api/rounding/2-floor.mdx",57893],e0dbc661:[()=>Promise.all([n.e(532),n.e(4878)]).then(n.bind(n,61922)),"@site/api/devices-functions/ndarray-cpu.mdx",61922],e0f5dbd0:[()=>n.e(2907).then(n.bind(n,14051)),"@site/tensor/api/trigonometric/4-acos.mdx",14051],e1a995f0:[()=>n.e(6131).then(n.bind(n,89625)),"@site/api/linear-algebra/ndarray-solve.mdx",89625],e28731ed:[()=>n.e(6263).then(n.bind(n,39462)),"@site/tensor/api/exponents/3-log.mdx",39462],e3ab6c04:[()=>Promise.all([n.e(532),n.e(4779)]).then(n.bind(n,48860)),"@site/api/low-level-debug/ndarray-dump.mdx",48860],e49fafa3:[()=>n.e(5104).then(n.bind(n,54278)),"@site/tensor/api/tensor/5-getShape.mdx",54278],e5f2c7af:[()=>n.e(4261).then(n.t.bind(n,80827,19)),"~docs/api/category-api-apisidebar-category-random-023.json",80827],e6bbfbcb:[()=>Promise.all([n.e(532),n.e(1021)]).then(n.bind(n,12620)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-log.mdx",12620],e77fed8f:[()=>Promise.all([n.e(532),n.e(4439)]).then(n.bind(n,48251)),"@site/api/manipulation/ndarray-atleast_1d.mdx",48251],e953be56:[()=>Promise.all([n.e(532),n.e(4092)]).then(n.bind(n,81119)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-log2.mdx",81119],e9a55e4f:[()=>n.e(2263).then(n.bind(n,74877)),"@site/docs/0-intro.md",74877],ee87c9cb:[()=>n.e(7503).then(n.bind(n,29916)),"@site/api/linear-algebra/ndarray-outer.mdx",29916],efaa7cb5:[()=>n.e(1587).then(n.bind(n,88158)),"@site/install/2-from-source.mdx",88158],f1764ef0:[()=>n.e(9173).then(n.bind(n,53838)),"@site/api/signal-processing/ndarray-convolve2d.mdx",53838],f204b923:[()=>n.e(8666).then(n.bind(n,93435)),"@site/tensor/intro/4-autograd-model.mdx",93435],f242d1fe:[()=>n.e(255).then(n.bind(n,21574)),"@site/tensor/intro/2-installing.mdx",21574],f244693e:[()=>n.e(539).then(n.bind(n,21296)),"@site/lattice/api/model/0-model-class.mdx",21296],f2c78fad:[()=>Promise.all([n.e(532),n.e(9429)]).then(n.bind(n,17295)),"@site/api/mathematical-functions/trigonometric/ndarray-degrees.mdx",17295],f31396af:[()=>n.e(4588).then(n.bind(n,43180)),"@site/tensor/api/trigonometric/5-arcsin.mdx",43180],f3476159:[()=>n.e(7483).then(n.bind(n,38360)),"@site/lattice/api/layers/5-reshaping-layers.mdx",38360],f3fd7915:[()=>n.e(701).then(n.bind(n,27078)),"@site/tensor/api/tensor/13-backward.mdx",27078],f48427f1:[()=>Promise.all([n.e(532),n.e(2293)]).then(n.bind(n,6315)),"@site/api/linear-algebra/ndarray-dot.mdx",6315],f4c51901:[()=>n.e(3234).then(n.bind(n,85873)),"@site/lattice/api/layers/3-convolution-layers.mdx",85873],f63dfb05:[()=>n.e(9419).then(n.bind(n,30881)),"@site/api/linear-algebra/ndarray-norm.mdx",30881],f6bb6b03:[()=>n.e(8789).then(n.bind(n,43988)),"@site/api/image-support/ndarray-toimage.mdx",43988],f6feb9ac:[()=>n.e(6627).then(n.bind(n,10886)),"@site/tensor/api/tensor/9-numElements.mdx",10886],f7324f50:[()=>n.e(5873).then(n.bind(n,30102)),"@site/tensor/api/trigonometric/2-cos.mdx",30102],f77b8544:[()=>Promise.all([n.e(532),n.e(473)]).then(n.bind(n,86053)),"@site/api/mathematical-functions/sum-products-differences/ndarray-sum.mdx",86053],f789a4d7:[()=>n.e(5041).then(n.bind(n,56089)),"@site/lattice/api/layers/1-normalization-layers.mdx",56089],f78d6cf0:[()=>Promise.all([n.e(532),n.e(4283)]).then(n.bind(n,94159)),"@site/api/mathematical-functions/trigonometric/ndarray-arccos.mdx",94159],f84ceed5:[()=>n.e(7494).then(n.bind(n,77573)),"@site/api/logic/ndarray-greater.mdx",77573],f9175c81:[()=>n.e(2925).then(n.bind(n,51621)),"@site/tensor/api/rounding/3-trunc.mdx",51621],f9d4f07b:[()=>Promise.all([n.e(532),n.e(9489)]).then(n.bind(n,15793)),"@site/api/mathematical-functions/exponents-and-logarithms/ndarray-exp.mdx",15793],fb48ffa8:[()=>n.e(6700).then(n.bind(n,90125)),"@site/api/mathematical-functions/extrema-finding/ndarray-min.mdx",90125],fc0a6c8b:[()=>n.e(5613).then(n.bind(n,32974)),"@site/api/0-intro.md",32974],fd930b00:[()=>n.e(9452).then(n.t.bind(n,82334,19)),"~docs/tensor/category-tensor-apisidebar-category-trigonometric-96d.json",82334],febe35bd:[()=>Promise.all([n.e(532),n.e(8159)]).then(n.bind(n,2295)),"@site/api/mathematical-functions/rounding/ndarray-fix.mdx",2295]};function c(e){let{error:t,retry:n,pastDelay:r}=e;return t?a.createElement("div",{style:{textAlign:"center",color:"#fff",backgroundColor:"#fa383e",borderColor:"#fa383e",borderStyle:"solid",borderRadius:"0.25rem",borderWidth:"1px",boxSizing:"border-box",display:"block",padding:"1rem",flex:"0 0 50%",marginLeft:"25%",marginRight:"25%",marginTop:"5rem",maxWidth:"50%",width:"100%"}},a.createElement("p",null,String(t)),a.createElement("div",null,a.createElement("button",{type:"button",onClick:n},"Retry"))):r?a.createElement("div",{style:{display:"flex",justifyContent:"center",alignItems:"center",height:"100vh"}},a.createElement("svg",{id:"loader",style:{width:128,height:110,position:"absolute",top:"calc(100vh - 64%)"},viewBox:"0 0 45 45",xmlns:"http://www.w3.org/2000/svg",stroke:"#61dafb"},a.createElement("g",{fill:"none",fillRule:"evenodd",transform:"translate(1 1)",strokeWidth:"2"},a.createElement("circle",{cx:"22",cy:"22",r:"6",strokeOpacity:"0"},a.createElement("animate",{attributeName:"r",begin:"1.5s",dur:"3s",values:"6;22",calcMode:"linear",repeatCount:"indefinite"}),a.createElement("animate",{attributeName:"stroke-opacity",begin:"1.5s",dur:"3s",values:"1;0",calcMode:"linear",repeatCount:"indefinite"}),a.createElement("animate",{attributeName:"stroke-width",begin:"1.5s",dur:"3s",values:"2;0",calcMode:"linear",repeatCount:"indefinite"})),a.createElement("circle",{cx:"22",cy:"22",r:"6",strokeOpacity:"0"},a.createElement("animate",{attributeName:"r",begin:"3s",dur:"3s",values:"6;22",calcMode:"linear",repeatCount:"indefinite"}),a.createElement("animate",{attributeName:"stroke-opacity",begin:"3s",dur:"3s",values:"1;0",calcMode:"linear",repeatCount:"indefinite"}),a.createElement("animate",{attributeName:"stroke-width",begin:"3s",dur:"3s",values:"2;0",calcMode:"linear",repeatCount:"indefinite"})),a.createElement("circle",{cx:"22",cy:"22",r:"8"},a.createElement("animate",{attributeName:"r",begin:"0s",dur:"1.5s",values:"6;1;2;3;4;5;6",calcMode:"linear",repeatCount:"indefinite"}))))):null}var u=n(99670),d=n(30226);function p(e,t){if("*"===e)return o()({loading:c,loader:()=>n.e(4972).then(n.bind(n,4972)),modules:["@theme/NotFound"],webpack:()=>[4972],render(e,t){const n=e.default;return a.createElement(d.z,{value:{plugin:{name:"native",id:"default"}}},a.createElement(n,t))}});const i=s[`${e}-${t}`],p={},f=[],m=[],h=(0,u.Z)(i);return Object.entries(h).forEach((e=>{let[t,n]=e;const a=l[n];a&&(p[t]=a[0],f.push(a[1]),m.push(a[2]))})),o().Map({loading:c,loader:p,modules:f,webpack:()=>m,render(t,n){const o=JSON.parse(JSON.stringify(i));Object.entries(t).forEach((t=>{let[n,a]=t;const r=a.default;if(!r)throw new Error(`The page component at ${e} doesn't have a default export. This makes it impossible to render anything. Consider default-exporting a React component.`);"object"!=typeof r&&"function"!=typeof r||Object.keys(a).filter((e=>"default"!==e)).forEach((e=>{r[e]=a[e]}));let i=o;const s=n.split(".");s.slice(0,-1).forEach((e=>{i=i[e]})),i[s[s.length-1]]=r}));const s=o.__comp;delete o.__comp;const l=o.__context;return delete o.__context,a.createElement(d.z,{value:l},a.createElement(s,(0,r.Z)({},o,n)))}})}const f=[{path:"/markdown-page",component:p("/markdown-page","42b"),exact:!0},{path:"/api",component:p("/api","4fd"),routes:[{path:"/api/category/arithmetics",component:p("/api/category/arithmetics","0d2"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/devices-functions",component:p("/api/category/devices-functions","349"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/exponents-and-logarithms",component:p("/api/category/exponents-and-logarithms","bde"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/extrema-finding",component:p("/api/category/extrema-finding","3a7"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/hyperbolic",component:p("/api/category/hyperbolic","469"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/image-processing",component:p("/api/category/image-processing","579"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/initializers",component:p("/api/category/initializers","9dc"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/linear-algebra",component:p("/api/category/linear-algebra","3ea"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/logic-functions",component:p("/api/category/logic-functions","6ba"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/low-level-debug",component:p("/api/category/low-level-debug","9eb"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/manipulation",component:p("/api/category/manipulation","9d5"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/math",component:p("/api/category/math","4dd"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/miscellaneous",component:p("/api/category/miscellaneous","383"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/random",component:p("/api/category/random","45d"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/rounding",component:p("/api/category/rounding","628"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/signal-processing",component:p("/api/category/signal-processing","617"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/statistics",component:p("/api/category/statistics","7f3"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/sums-products-differences",component:p("/api/category/sums-products-differences","5ab"),exact:!0,sidebar:"apiSidebar"},{path:"/api/category/trigonometric",component:p("/api/category/trigonometric","41f"),exact:!0,sidebar:"apiSidebar"},{path:"/api/devices-functions/ndarray-cpu",component:p("/api/devices-functions/ndarray-cpu","fe3"),exact:!0,sidebar:"apiSidebar"},{path:"/api/devices-functions/ndarray-gpu",component:p("/api/devices-functions/ndarray-gpu","0c7"),exact:!0,sidebar:"apiSidebar"},{path:"/api/devices-functions/ndarray-isgpu",component:p("/api/devices-functions/ndarray-isgpu","073"),exact:!0,sidebar:"apiSidebar"},{path:"/api/devices-functions/ndarray-setdevice",component:p("/api/devices-functions/ndarray-setdevice","873"),exact:!0,sidebar:"apiSidebar"},{path:"/api/image-support/ndarray-toimage",component:p("/api/image-support/ndarray-toimage","72f"),exact:!0,sidebar:"apiSidebar"},{path:"/api/initializers/ndarray-arange",component:p("/api/initializers/ndarray-arange","2ff"),exact:!0,sidebar:"apiSidebar"},{path:"/api/initializers/ndarray-array",component:p("/api/initializers/ndarray-array","9cd"),exact:!0,sidebar:"apiSidebar"},{path:"/api/initializers/ndarray-identity",component:p("/api/initializers/ndarray-identity","f94"),exact:!0,sidebar:"apiSidebar"},{path:"/api/initializers/ndarray-ones",component:p("/api/initializers/ndarray-ones","a64"),exact:!0,sidebar:"apiSidebar"},{path:"/api/initializers/ndarray-zeros",component:p("/api/initializers/ndarray-zeros","4c4"),exact:!0,sidebar:"apiSidebar"},{path:"/api/intro",component:p("/api/intro","0f7"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-cholesky",component:p("/api/linear-algebra/ndarray-cholesky","822"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-cond",component:p("/api/linear-algebra/ndarray-cond","f02"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-det",component:p("/api/linear-algebra/ndarray-det","438"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-dot",component:p("/api/linear-algebra/ndarray-dot","e4c"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-eig",component:p("/api/linear-algebra/ndarray-eig","5b0"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-inner",component:p("/api/linear-algebra/ndarray-inner","918"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-inv",component:p("/api/linear-algebra/ndarray-inv","152"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-lstsq",component:p("/api/linear-algebra/ndarray-lstsq","6ea"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-lu",component:p("/api/linear-algebra/ndarray-lu","abb"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-matmul",component:p("/api/linear-algebra/ndarray-matmul","47e"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-matrixrank",component:p("/api/linear-algebra/ndarray-matrixrank","45e"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-norm",component:p("/api/linear-algebra/ndarray-norm","24c"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-outer",component:p("/api/linear-algebra/ndarray-outer","049"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-qr",component:p("/api/linear-algebra/ndarray-qr","30a"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-solve",component:p("/api/linear-algebra/ndarray-solve","600"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-svd",component:p("/api/linear-algebra/ndarray-svd","ff5"),exact:!0,sidebar:"apiSidebar"},{path:"/api/linear-algebra/ndarray-trace",component:p("/api/linear-algebra/ndarray-trace","9d4"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-all",component:p("/api/logic/ndarray-all","3b4"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-allclose",component:p("/api/logic/ndarray-allclose","701"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-equal",component:p("/api/logic/ndarray-equal","d67"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-greater",component:p("/api/logic/ndarray-greater","221"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-greater_equal",component:p("/api/logic/ndarray-greater_equal","5cc"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-less",component:p("/api/logic/ndarray-less","3e7"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-less_equal",component:p("/api/logic/ndarray-less_equal","2e5"),exact:!0,sidebar:"apiSidebar"},{path:"/api/logic/ndarray-not_equal",component:p("/api/logic/ndarray-not_equal","499"),exact:!0,sidebar:"apiSidebar"},{path:"/api/low-level-debug/ndarray-dump",component:p("/api/low-level-debug/ndarray-dump","79b"),exact:!0,sidebar:"apiSidebar"},{path:"/api/low-level-debug/ndarray-dumpDevices",component:p("/api/low-level-debug/ndarray-dumpDevices","4e3"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-atleast_1d",component:p("/api/manipulation/ndarray-atleast_1d","4cc"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-atleast_2d",component:p("/api/manipulation/ndarray-atleast_2d","d22"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-atleast_3d",component:p("/api/manipulation/ndarray-atleast_3d","2c0"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-copy",component:p("/api/manipulation/ndarray-copy","838"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-expand_dims",component:p("/api/manipulation/ndarray-expand_dims","833"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-flat",component:p("/api/manipulation/ndarray-flat","6d0"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-reshape",component:p("/api/manipulation/ndarray-reshape","296"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-shape",component:p("/api/manipulation/ndarray-shape","950"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-size",component:p("/api/manipulation/ndarray-size","67b"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-toArray",component:p("/api/manipulation/ndarray-toArray","64a"),exact:!0,sidebar:"apiSidebar"},{path:"/api/manipulation/ndarray-transpose",component:p("/api/manipulation/ndarray-transpose","513"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/arithmetic/ndarray-add",component:p("/api/mathematical-functions/arithmetic/ndarray-add","43b"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/arithmetic/ndarray-divide",component:p("/api/mathematical-functions/arithmetic/ndarray-divide","e71"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/arithmetic/ndarray-mod",component:p("/api/mathematical-functions/arithmetic/ndarray-mod","2f0"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/arithmetic/ndarray-multiply",component:p("/api/mathematical-functions/arithmetic/ndarray-multiply","e76"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/arithmetic/ndarray-negative",component:p("/api/mathematical-functions/arithmetic/ndarray-negative","f33"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/arithmetic/ndarray-pow",component:p("/api/mathematical-functions/arithmetic/ndarray-pow","dba"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/arithmetic/ndarray-subtract",component:p("/api/mathematical-functions/arithmetic/ndarray-subtract","ab7"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-exp",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-exp","286"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2","e61"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1","a7a"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-log",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-log","5c6"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-log10",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-log10","4b9"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p","f62"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-log2",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-log2","0e2"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/exponents-and-logarithms/ndarray-logb",component:p("/api/mathematical-functions/exponents-and-logarithms/ndarray-logb","ca4"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/extrema-finding/ndarray-max",component:p("/api/mathematical-functions/extrema-finding/ndarray-max","7ea"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/extrema-finding/ndarray-min",component:p("/api/mathematical-functions/extrema-finding/ndarray-min","23b"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/hyperbolic/ndarray-arccosh",component:p("/api/mathematical-functions/hyperbolic/ndarray-arccosh","da6"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/hyperbolic/ndarray-arcsinh",component:p("/api/mathematical-functions/hyperbolic/ndarray-arcsinh","dd7"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/hyperbolic/ndarray-arctanh",component:p("/api/mathematical-functions/hyperbolic/ndarray-arctanh","9bf"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/hyperbolic/ndarray-cosh",component:p("/api/mathematical-functions/hyperbolic/ndarray-cosh","c82"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/hyperbolic/ndarray-sinh",component:p("/api/mathematical-functions/hyperbolic/ndarray-sinh","e92"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/hyperbolic/ndarray-tanh",component:p("/api/mathematical-functions/hyperbolic/ndarray-tanh","0bc"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/miscellaneous/ndarray-abs",component:p("/api/mathematical-functions/miscellaneous/ndarray-abs","7aa"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/miscellaneous/ndarray-clip",component:p("/api/mathematical-functions/miscellaneous/ndarray-clip","1be"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/miscellaneous/ndarray-sign",component:p("/api/mathematical-functions/miscellaneous/ndarray-sign","15c"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/miscellaneous/ndarray-sinc",component:p("/api/mathematical-functions/miscellaneous/ndarray-sinc","e77"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/miscellaneous/ndarray-sqrt",component:p("/api/mathematical-functions/miscellaneous/ndarray-sqrt","4a1"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/miscellaneous/ndarray-square",component:p("/api/mathematical-functions/miscellaneous/ndarray-square","dec"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/rounding/ndarray-ceil",component:p("/api/mathematical-functions/rounding/ndarray-ceil","bcf"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/rounding/ndarray-fix",component:p("/api/mathematical-functions/rounding/ndarray-fix","cc2"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/rounding/ndarray-floor",component:p("/api/mathematical-functions/rounding/ndarray-floor","f32"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/rounding/ndarray-rint",component:p("/api/mathematical-functions/rounding/ndarray-rint","c10"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/rounding/ndarray-round",component:p("/api/mathematical-functions/rounding/ndarray-round","935"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/rounding/ndarray-trunc",component:p("/api/mathematical-functions/rounding/ndarray-trunc","6e2"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/sum-products-differences/ndarray-prod",component:p("/api/mathematical-functions/sum-products-differences/ndarray-prod","bbc"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/sum-products-differences/ndarray-sum",component:p("/api/mathematical-functions/sum-products-differences/ndarray-sum","4a0"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-arccos",component:p("/api/mathematical-functions/trigonometric/ndarray-arccos","a75"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-arcsin",component:p("/api/mathematical-functions/trigonometric/ndarray-arcsin","045"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-arctan",component:p("/api/mathematical-functions/trigonometric/ndarray-arctan","ee5"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-cos",component:p("/api/mathematical-functions/trigonometric/ndarray-cos","e49"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-degrees",component:p("/api/mathematical-functions/trigonometric/ndarray-degrees","029"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-radians",component:p("/api/mathematical-functions/trigonometric/ndarray-radians","05c"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-sin",component:p("/api/mathematical-functions/trigonometric/ndarray-sin","982"),exact:!0,sidebar:"apiSidebar"},{path:"/api/mathematical-functions/trigonometric/ndarray-tan",component:p("/api/mathematical-functions/trigonometric/ndarray-tan","e23"),exact:!0,sidebar:"apiSidebar"},{path:"/api/random/ndarray-normal",component:p("/api/random/ndarray-normal","858"),exact:!0,sidebar:"apiSidebar"},{path:"/api/random/ndarray-poisson",component:p("/api/random/ndarray-poisson","20c"),exact:!0,sidebar:"apiSidebar"},{path:"/api/random/ndarray-standard_normal",component:p("/api/random/ndarray-standard_normal","d65"),exact:!0,sidebar:"apiSidebar"},{path:"/api/random/ndarray-uniform",component:p("/api/random/ndarray-uniform","dae"),exact:!0,sidebar:"apiSidebar"},{path:"/api/signal-processing/ndarray-convolve2d",component:p("/api/signal-processing/ndarray-convolve2d","46a"),exact:!0,sidebar:"apiSidebar"},{path:"/api/statistics/ndarray-average",component:p("/api/statistics/ndarray-average","b72"),exact:!0,sidebar:"apiSidebar"},{path:"/api/statistics/ndarray-mean",component:p("/api/statistics/ndarray-mean","8fb"),exact:!0,sidebar:"apiSidebar"},{path:"/api/statistics/ndarray-median",component:p("/api/statistics/ndarray-median","d4c"),exact:!0,sidebar:"apiSidebar"},{path:"/api/statistics/ndarray-quantile",component:p("/api/statistics/ndarray-quantile","cf4"),exact:!0,sidebar:"apiSidebar"},{path:"/api/statistics/ndarray-std",component:p("/api/statistics/ndarray-std","077"),exact:!0,sidebar:"apiSidebar"},{path:"/api/statistics/ndarray-variance",component:p("/api/statistics/ndarray-variance","66f"),exact:!0,sidebar:"apiSidebar"}]},{path:"/docs",component:p("/docs","5b3"),routes:[{path:"/docs/category/fundamentals",component:p("/docs/category/fundamentals","85a"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/image-processing",component:p("/docs/image-processing","44e"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/intro",component:p("/docs/intro","d91"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/ndarray",component:p("/docs/ndarray","43c"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/tutorial-basics/broadcast",component:p("/docs/tutorial-basics/broadcast","8e1"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/tutorial-basics/gpu",component:p("/docs/tutorial-basics/gpu","548"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/tutorial-basics/iterating-ndarray",component:p("/docs/tutorial-basics/iterating-ndarray","753"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/tutorial-basics/ndarray-creation",component:p("/docs/tutorial-basics/ndarray-creation","4d6"),exact:!0,sidebar:"tutorialSidebar"},{path:"/docs/tutorial-basics/ndarray-indexing",component:p("/docs/tutorial-basics/ndarray-indexing","f25"),exact:!0,sidebar:"tutorialSidebar"}]},{path:"/install",component:p("/install","0ea"),routes:[{path:"/install/from-source",component:p("/install/from-source","b67"),exact:!0,sidebar:"community"},{path:"/install/install",component:p("/install/install","03b"),exact:!0,sidebar:"community"}]},{path:"/lattice",component:p("/lattice","adc"),routes:[{path:"/lattice/api/layers/convolution-layers",component:p("/lattice/api/layers/convolution-layers","3ac"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/layers/core",component:p("/lattice/api/layers/core","7b9"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/layers/merging-layers",component:p("/lattice/api/layers/merging-layers","9c3"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/layers/normalization-layers",component:p("/lattice/api/layers/normalization-layers","81f"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/layers/pooling-layers",component:p("/lattice/api/layers/pooling-layers","a6a"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/layers/regularization-layers",component:p("/lattice/api/layers/regularization-layers","de9"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/layers/reshaping-layers",component:p("/lattice/api/layers/reshaping-layers","488"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/losses/probabilistic",component:p("/lattice/api/losses/probabilistic","ee9"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/losses/regression",component:p("/lattice/api/losses/regression","ff3"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/model/model-class",component:p("/lattice/api/model/model-class","172"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/model/persistence",component:p("/lattice/api/model/persistence","0c8"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/model/stack",component:p("/lattice/api/model/stack","420"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/model/training",component:p("/lattice/api/model/training","196"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/optimizers/adadelta",component:p("/lattice/api/optimizers/adadelta","168"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/optimizers/adafactor",component:p("/lattice/api/optimizers/adafactor","b3d"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/optimizers/adagrad",component:p("/lattice/api/optimizers/adagrad","b31"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/optimizers/adam",component:p("/lattice/api/optimizers/adam","c6b"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/optimizers/nadam",component:p("/lattice/api/optimizers/nadam","c1e"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/optimizers/rmsprop",component:p("/lattice/api/optimizers/rmsprop","4ae"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/api/optimizers/sgd",component:p("/lattice/api/optimizers/sgd","11f"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/category/api",component:p("/lattice/category/api","c49"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/category/getting-started-with-lattice",component:p("/lattice/category/getting-started-with-lattice","f8c"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/category/layers-api",component:p("/lattice/category/layers-api","ac1"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/category/losses-api",component:p("/lattice/category/losses-api","80b"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/category/model-api",component:p("/lattice/category/model-api","1a2"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/category/numpower-lattice",component:p("/lattice/category/numpower-lattice","9fb"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/category/optimizers-api",component:p("/lattice/category/optimizers-api","cc2"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/getting-started/getting-started",component:p("/lattice/getting-started/getting-started","8f9"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/intro/lattice-install",component:p("/lattice/intro/lattice-install","e7d"),exact:!0,sidebar:"apiSidebar"},{path:"/lattice/intro/lattice-intro",component:p("/lattice/intro/lattice-intro","ada"),exact:!0,sidebar:"apiSidebar"}]},{path:"/tensor",component:p("/tensor","371"),routes:[{path:"/tensor/api/arithmetics/add",component:p("/tensor/api/arithmetics/add","52f"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/divide",component:p("/tensor/api/arithmetics/divide","19e"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/mod",component:p("/tensor/api/arithmetics/mod","f5c"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/multiply",component:p("/tensor/api/arithmetics/multiply","e9e"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/negative",component:p("/tensor/api/arithmetics/negative","052"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/power",component:p("/tensor/api/arithmetics/power","b5f"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/subtract",component:p("/tensor/api/arithmetics/subtract","78c"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/sum",component:p("/tensor/api/arithmetics/sum","3ad"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/arithmetics/sum_axis",component:p("/tensor/api/arithmetics/sum_axis","b4e"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/exponents/exp",component:p("/tensor/api/exponents/exp","7cf"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/exponents/exp2",component:p("/tensor/api/exponents/exp2","135"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/exponents/expm1",component:p("/tensor/api/exponents/expm1","759"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/exponents/log",component:p("/tensor/api/exponents/log","360"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/exponents/log10",component:p("/tensor/api/exponents/log10","623"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/exponents/log1p",component:p("/tensor/api/exponents/log1p","ed8"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/exponents/log2",component:p("/tensor/api/exponents/log2","f22"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/arccosh",component:p("/tensor/api/hyperbolic/arccosh","980"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/arcsinh",component:p("/tensor/api/hyperbolic/arcsinh","b7a"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/arctan2",component:p("/tensor/api/hyperbolic/arctan2","660"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/arctanh",component:p("/tensor/api/hyperbolic/arctanh","f99"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/cosh",component:p("/tensor/api/hyperbolic/cosh","64d"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/sinc",component:p("/tensor/api/hyperbolic/sinc","8d3"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/sinh",component:p("/tensor/api/hyperbolic/sinh","d59"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/hyperbolic/tanh",component:p("/tensor/api/hyperbolic/tanh","b0c"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/cond",component:p("/tensor/api/linalg/cond","1d9"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/det",component:p("/tensor/api/linalg/det","c82"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/dot",component:p("/tensor/api/linalg/dot","0eb"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/matmul",component:p("/tensor/api/linalg/matmul","57d"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/matrix_rank",component:p("/tensor/api/linalg/matrix_rank","02c"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/norm",component:p("/tensor/api/linalg/norm","22f"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/outer",component:p("/tensor/api/linalg/outer","181"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/linalg/svd",component:p("/tensor/api/linalg/svd","8da"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/manipulation/reshape",component:p("/tensor/api/manipulation/reshape","bad"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/rounding/ceil",component:p("/tensor/api/rounding/ceil","155"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/rounding/clip",component:p("/tensor/api/rounding/clip","c7b"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/rounding/floor",component:p("/tensor/api/rounding/floor","71a"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/rounding/trunc",component:p("/tensor/api/rounding/trunc","5c1"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/backward",component:p("/tensor/api/tensor/backward","fe9"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/detach",component:p("/tensor/api/tensor/detach","00e"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/getData",component:p("/tensor/api/tensor/getData","54f"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/getName",component:p("/tensor/api/tensor/getName","c2d"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/getShape",component:p("/tensor/api/tensor/getShape","be2"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/getTape",component:p("/tensor/api/tensor/getTape","158"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/grad",component:p("/tensor/api/tensor/grad","016"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/graph",component:p("/tensor/api/tensor/graph","a82"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/isGPU",component:p("/tensor/api/tensor/isGPU","eaa"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/isScalar",component:p("/tensor/api/tensor/isScalar","a43"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/numElements",component:p("/tensor/api/tensor/numElements","d33"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/requireGrad",component:p("/tensor/api/tensor/requireGrad","6e2"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/resetGradients",component:p("/tensor/api/tensor/resetGradients","2fd"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/tensor/toArray",component:p("/tensor/api/tensor/toArray","dcf"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/trigonometric/acos",component:p("/tensor/api/trigonometric/acos","1fa"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/trigonometric/arcsin",component:p("/tensor/api/trigonometric/arcsin","2e9"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/trigonometric/arctan",component:p("/tensor/api/trigonometric/arctan","cb1"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/trigonometric/cos",component:p("/tensor/api/trigonometric/cos","b6d"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/trigonometric/radians",component:p("/tensor/api/trigonometric/radians","647"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/trigonometric/sin",component:p("/tensor/api/trigonometric/sin","8c8"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/api/trigonometric/tan",component:p("/tensor/api/trigonometric/tan","6ce"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/api",component:p("/tensor/category/api","bf7"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/arithmetics",component:p("/tensor/category/arithmetics","306"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/exponential-and-logarithms",component:p("/tensor/category/exponential-and-logarithms","e86"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/hyperbolic-operations",component:p("/tensor/category/hyperbolic-operations","72a"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/linear-algebra",component:p("/tensor/category/linear-algebra","be9"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/low-level-classes-and-operations",component:p("/tensor/category/low-level-classes-and-operations","fd9"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/manipulation",component:p("/tensor/category/manipulation","704"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/neural-network-module",component:p("/tensor/category/neural-network-module","d22"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/numpower-autograd",component:p("/tensor/category/numpower-autograd","0a1"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/rounding",component:p("/tensor/category/rounding","318"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/tensor-api",component:p("/tensor/category/tensor-api","02c"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/category/trigonometric",component:p("/tensor/category/trigonometric","a57"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/intro/autograd-intro",component:p("/tensor/intro/autograd-intro","a88"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/intro/autograd-model",component:p("/tensor/intro/autograd-model","018"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/intro/basic-usage",component:p("/tensor/intro/basic-usage","b08"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/intro/installing",component:p("/tensor/intro/installing","0fd"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/low-level/arithmetic-operand",component:p("/tensor/low-level/arithmetic-operand","7c6"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/nn/activations",component:p("/tensor/nn/activations","828"),exact:!0,sidebar:"apiSidebar"},{path:"/tensor/nn/losses",component:p("/tensor/nn/losses","240"),exact:!0,sidebar:"apiSidebar"}]},{path:"/",component:p("/","c90"),exact:!0},{path:"*",component:p("*")}]},98934:(e,t,n)=>{"use strict";n.d(t,{_:()=>r,t:()=>i});var a=n(67294);const r=a.createContext(!1);function i(e){let{children:t}=e;const[n,i]=(0,a.useState)(!1);return(0,a.useEffect)((()=>{i(!0)}),[]),a.createElement(r.Provider,{value:n},t)}},49383:(e,t,n)=>{"use strict";var a=n(67294),r=n(73935),i=n(73727),o=n(70405),s=n(10412);const l=[n(32497),n(3310),n(18320),n(52295)];var c=n(723),u=n(16550),d=n(18790);function p(e){let{children:t}=e;return a.createElement(a.Fragment,null,t)}var f=n(87462),m=n(35742),h=n(52263),b=n(44996),g=n(86668),y=n(1944),v=n(94711),w=n(19727),S=n(43320),x=n(90197);function _(){const{i18n:{defaultLocale:e,localeConfigs:t}}=(0,h.Z)(),n=(0,v.l)();return a.createElement(m.Z,null,Object.entries(t).map((e=>{let[t,{htmlLang:r}]=e;return a.createElement("link",{key:t,rel:"alternate",href:n.createUrl({locale:t,fullyQualified:!0}),hrefLang:r})})),a.createElement("link",{rel:"alternate",href:n.createUrl({locale:e,fullyQualified:!0}),hrefLang:"x-default"}))}function E(e){let{permalink:t}=e;const{siteConfig:{url:n}}=(0,h.Z)(),r=function(){const{siteConfig:{url:e}}=(0,h.Z)(),{pathname:t}=(0,u.TH)();return e+(0,b.Z)(t)}(),i=t?`${n}${t}`:r;return a.createElement(m.Z,null,a.createElement("meta",{property:"og:url",content:i}),a.createElement("link",{rel:"canonical",href:i}))}function k(){const{i18n:{currentLocale:e}}=(0,h.Z)(),{metadata:t,image:n}=(0,g.L)();return a.createElement(a.Fragment,null,a.createElement(m.Z,null,a.createElement("meta",{name:"twitter:card",content:"summary_large_image"}),a.createElement("body",{className:w.h})),n&&a.createElement(y.d,{image:n}),a.createElement(E,null),a.createElement(_,null),a.createElement(x.Z,{tag:S.HX,locale:e}),a.createElement(m.Z,null,t.map(((e,t)=>a.createElement("meta",(0,f.Z)({key:t},e))))))}const C=new Map;function T(e){if(C.has(e.pathname))return{...e,pathname:C.get(e.pathname)};if((0,d.f)(c.Z,e.pathname).some((e=>{let{route:t}=e;return!0===t.exact})))return C.set(e.pathname,e.pathname),e;const t=e.pathname.trim().replace(/(?:\/index)?\.html$/,"")||"/";return C.set(e.pathname,t),{...e,pathname:t}}var P=n(98934),A=n(58940);function N(e){for(var t=arguments.length,n=new Array(t>1?t-1:0),a=1;a{const a=t.default?.[e]??t[e];return a?.(...n)}));return()=>r.forEach((e=>e?.()))}const L=function(e){let{children:t,location:n,previousLocation:r}=e;return(0,a.useLayoutEffect)((()=>{r!==n&&(!function(e){let{location:t,previousLocation:n}=e;if(!n)return;const a=t.pathname===n.pathname,r=t.hash===n.hash,i=t.search===n.search;if(a&&r&&!i)return;const{hash:o}=t;if(o){const e=decodeURIComponent(o.substring(1)),t=document.getElementById(e);t?.scrollIntoView()}else window.scrollTo(0,0)}({location:n,previousLocation:r}),N("onRouteDidUpdate",{previousLocation:r,location:n}))}),[r,n]),t};function O(e){const t=Array.from(new Set([e,decodeURI(e)])).map((e=>(0,d.f)(c.Z,e))).flat();return Promise.all(t.map((e=>e.route.component.preload?.())))}class I extends a.Component{previousLocation;routeUpdateCleanupCb;constructor(e){super(e),this.previousLocation=null,this.routeUpdateCleanupCb=s.Z.canUseDOM?N("onRouteUpdate",{previousLocation:null,location:this.props.location}):()=>{},this.state={nextRouteHasLoaded:!0}}shouldComponentUpdate(e,t){if(e.location===this.props.location)return t.nextRouteHasLoaded;const n=e.location;return this.previousLocation=this.props.location,this.setState({nextRouteHasLoaded:!1}),this.routeUpdateCleanupCb=N("onRouteUpdate",{previousLocation:this.previousLocation,location:n}),O(n.pathname).then((()=>{this.routeUpdateCleanupCb(),this.setState({nextRouteHasLoaded:!0})})).catch((e=>{console.warn(e),window.location.reload()})),!1}render(){const{children:e,location:t}=this.props;return a.createElement(L,{previousLocation:this.previousLocation,location:t},a.createElement(u.AW,{location:t,render:()=>e}))}}const R=I,D="__docusaurus-base-url-issue-banner-container",M="__docusaurus-base-url-issue-banner",z="__docusaurus-base-url-issue-banner-suggestion-container",F="__DOCUSAURUS_INSERT_BASEURL_BANNER";function B(e){return`\nwindow['${F}'] = true;\n\ndocument.addEventListener('DOMContentLoaded', maybeInsertBanner);\n\nfunction maybeInsertBanner() {\n var shouldInsert = window['${F}'];\n shouldInsert && insertBanner();\n}\n\nfunction insertBanner() {\n var bannerContainer = document.getElementById('${D}');\n if (!bannerContainer) {\n return;\n }\n var bannerHtml = ${JSON.stringify(function(e){return`\n
\n

Your Docusaurus site did not load properly.

\n

A very common reason is a wrong site baseUrl configuration.

\n

Current configured baseUrl = ${e} ${"/"===e?" (default value)":""}

\n

We suggest trying baseUrl =

\n
\n`}(e)).replace(/{window[F]=!1}),[]),a.createElement(a.Fragment,null,!s.Z.canUseDOM&&a.createElement(m.Z,null,a.createElement("script",null,B(e))),a.createElement("div",{id:D}))}function $(){const{siteConfig:{baseUrl:e,baseUrlIssueBanner:t}}=(0,h.Z)(),{pathname:n}=(0,u.TH)();return t&&n===e?a.createElement(j,null):null}function U(){const{siteConfig:{favicon:e,title:t,noIndex:n},i18n:{currentLocale:r,localeConfigs:i}}=(0,h.Z)(),o=(0,b.Z)(e),{htmlLang:s,direction:l}=i[r];return a.createElement(m.Z,null,a.createElement("html",{lang:s,dir:l}),a.createElement("title",null,t),a.createElement("meta",{property:"og:title",content:t}),a.createElement("meta",{name:"viewport",content:"width=device-width, initial-scale=1.0"}),n&&a.createElement("meta",{name:"robots",content:"noindex, nofollow"}),e&&a.createElement("link",{rel:"icon",href:o}))}var Z=n(44763);function H(){const e=(0,d.H)(c.Z),t=(0,u.TH)();return a.createElement(Z.Z,null,a.createElement(A.M,null,a.createElement(P.t,null,a.createElement(p,null,a.createElement(U,null),a.createElement(k,null),a.createElement($,null),a.createElement(R,{location:T(t)},e)))))}var G=n(16887);const q=function(e){try{return document.createElement("link").relList.supports(e)}catch{return!1}}("prefetch")?function(e){return new Promise(((t,n)=>{if("undefined"==typeof document)return void n();const a=document.createElement("link");a.setAttribute("rel","prefetch"),a.setAttribute("href",e),a.onload=()=>t(),a.onerror=()=>n();const r=document.getElementsByTagName("head")[0]??document.getElementsByName("script")[0]?.parentNode;r?.appendChild(a)}))}:function(e){return new Promise(((t,n)=>{const a=new XMLHttpRequest;a.open("GET",e,!0),a.withCredentials=!0,a.onload=()=>{200===a.status?t():n()},a.send(null)}))};var V=n(99670);const W=new Set,Y=new Set,K=()=>navigator.connection?.effectiveType.includes("2g")||navigator.connection?.saveData,X={prefetch(e){if(!(e=>!K()&&!Y.has(e)&&!W.has(e))(e))return!1;W.add(e);const t=(0,d.f)(c.Z,e).flatMap((e=>{return t=e.route.path,Object.entries(G).filter((e=>{let[n]=e;return n.replace(/-[^-]+$/,"")===t})).flatMap((e=>{let[,t]=e;return Object.values((0,V.Z)(t))}));var t}));return Promise.all(t.map((e=>{const t=n.gca(e);return t&&!t.includes("undefined")?q(t).catch((()=>{})):Promise.resolve()})))},preload:e=>!!(e=>!K()&&!Y.has(e))(e)&&(Y.add(e),O(e))},Q=Object.freeze(X);if(s.Z.canUseDOM){window.docusaurus=Q;const e=r.hydrate;O(window.location.pathname).then((()=>{e(a.createElement(o.B6,null,a.createElement(i.VK,null,a.createElement(H,null))),document.getElementById("__docusaurus"))}))}},58940:(e,t,n)=>{"use strict";n.d(t,{_:()=>u,M:()=>d});var a=n(67294),r=n(36809);const i=JSON.parse('{"docusaurus-lunr-search":{"default":{"fileNames":{"searchDoc":"search-doc-1720524005749.json","lunrIndex":"lunr-index-1720524005749.json"}}},"docusaurus-plugin-content-docs":{"install":{"path":"/install","versions":[{"name":"current","label":"Next","isLast":true,"path":"/install","mainDocId":"install","docs":[{"id":"from-source","path":"/install/from-source","sidebar":"community"},{"id":"install","path":"/install/install","sidebar":"community"}],"draftIds":[],"sidebars":{"community":{"link":{"path":"/install/install","label":"install"}}}}],"breadcrumbs":true},"default":{"path":"/docs","versions":[{"name":"current","label":"Next","isLast":true,"path":"/docs","mainDocId":"intro","docs":[{"id":"image-processing","path":"/docs/image-processing","sidebar":"tutorialSidebar"},{"id":"intro","path":"/docs/intro","sidebar":"tutorialSidebar"},{"id":"ndarray","path":"/docs/ndarray","sidebar":"tutorialSidebar"},{"id":"tutorial-basics/broadcast","path":"/docs/tutorial-basics/broadcast","sidebar":"tutorialSidebar"},{"id":"tutorial-basics/gpu","path":"/docs/tutorial-basics/gpu","sidebar":"tutorialSidebar"},{"id":"tutorial-basics/iterating-ndarray","path":"/docs/tutorial-basics/iterating-ndarray","sidebar":"tutorialSidebar"},{"id":"tutorial-basics/ndarray-creation","path":"/docs/tutorial-basics/ndarray-creation","sidebar":"tutorialSidebar"},{"id":"tutorial-basics/ndarray-indexing","path":"/docs/tutorial-basics/ndarray-indexing","sidebar":"tutorialSidebar"},{"id":"/category/fundamentals","path":"/docs/category/fundamentals","sidebar":"tutorialSidebar"}],"draftIds":[],"sidebars":{"tutorialSidebar":{"link":{"path":"/docs/intro","label":"intro"}}}}],"breadcrumbs":true},"lattice":{"path":"/lattice","versions":[{"name":"current","label":"Next","isLast":true,"path":"/lattice","mainDocId":"intro/lattice-intro","docs":[{"id":"api/layers/convolution-layers","path":"/lattice/api/layers/convolution-layers","sidebar":"apiSidebar"},{"id":"api/layers/core","path":"/lattice/api/layers/core","sidebar":"apiSidebar"},{"id":"api/layers/merging-layers","path":"/lattice/api/layers/merging-layers","sidebar":"apiSidebar"},{"id":"api/layers/normalization-layers","path":"/lattice/api/layers/normalization-layers","sidebar":"apiSidebar"},{"id":"api/layers/pooling-layers","path":"/lattice/api/layers/pooling-layers","sidebar":"apiSidebar"},{"id":"api/layers/regularization-layers","path":"/lattice/api/layers/regularization-layers","sidebar":"apiSidebar"},{"id":"api/layers/reshaping-layers","path":"/lattice/api/layers/reshaping-layers","sidebar":"apiSidebar"},{"id":"api/losses/probabilistic","path":"/lattice/api/losses/probabilistic","sidebar":"apiSidebar"},{"id":"api/losses/regression","path":"/lattice/api/losses/regression","sidebar":"apiSidebar"},{"id":"api/model/model-class","path":"/lattice/api/model/model-class","sidebar":"apiSidebar"},{"id":"api/model/persistence","path":"/lattice/api/model/persistence","sidebar":"apiSidebar"},{"id":"api/model/stack","path":"/lattice/api/model/stack","sidebar":"apiSidebar"},{"id":"api/model/training","path":"/lattice/api/model/training","sidebar":"apiSidebar"},{"id":"api/optimizers/adadelta","path":"/lattice/api/optimizers/adadelta","sidebar":"apiSidebar"},{"id":"api/optimizers/adafactor","path":"/lattice/api/optimizers/adafactor","sidebar":"apiSidebar"},{"id":"api/optimizers/adagrad","path":"/lattice/api/optimizers/adagrad","sidebar":"apiSidebar"},{"id":"api/optimizers/adam","path":"/lattice/api/optimizers/adam","sidebar":"apiSidebar"},{"id":"api/optimizers/nadam","path":"/lattice/api/optimizers/nadam","sidebar":"apiSidebar"},{"id":"api/optimizers/rmsprop","path":"/lattice/api/optimizers/rmsprop","sidebar":"apiSidebar"},{"id":"api/optimizers/sgd","path":"/lattice/api/optimizers/sgd","sidebar":"apiSidebar"},{"id":"getting-started/getting-started","path":"/lattice/getting-started/getting-started","sidebar":"apiSidebar"},{"id":"intro/lattice-install","path":"/lattice/intro/lattice-install","sidebar":"apiSidebar"},{"id":"intro/lattice-intro","path":"/lattice/intro/lattice-intro","sidebar":"apiSidebar"},{"id":"/category/numpower-lattice","path":"/lattice/category/numpower-lattice","sidebar":"apiSidebar"},{"id":"/category/getting-started-with-lattice","path":"/lattice/category/getting-started-with-lattice","sidebar":"apiSidebar"},{"id":"/category/api","path":"/lattice/category/api","sidebar":"apiSidebar"},{"id":"/category/model-api","path":"/lattice/category/model-api","sidebar":"apiSidebar"},{"id":"/category/layers-api","path":"/lattice/category/layers-api","sidebar":"apiSidebar"},{"id":"/category/losses-api","path":"/lattice/category/losses-api","sidebar":"apiSidebar"},{"id":"/category/optimizers-api","path":"/lattice/category/optimizers-api","sidebar":"apiSidebar"}],"draftIds":[],"sidebars":{"apiSidebar":{"link":{"path":"/lattice/category/numpower-lattice","label":"NumPower Lattice"}}}}],"breadcrumbs":true},"tensor":{"path":"/tensor","versions":[{"name":"current","label":"Next","isLast":true,"path":"/tensor","mainDocId":"intro/autograd-intro","docs":[{"id":"api/arithmetics/add","path":"/tensor/api/arithmetics/add","sidebar":"apiSidebar"},{"id":"api/arithmetics/divide","path":"/tensor/api/arithmetics/divide","sidebar":"apiSidebar"},{"id":"api/arithmetics/mod","path":"/tensor/api/arithmetics/mod","sidebar":"apiSidebar"},{"id":"api/arithmetics/multiply","path":"/tensor/api/arithmetics/multiply","sidebar":"apiSidebar"},{"id":"api/arithmetics/negative","path":"/tensor/api/arithmetics/negative","sidebar":"apiSidebar"},{"id":"api/arithmetics/power","path":"/tensor/api/arithmetics/power","sidebar":"apiSidebar"},{"id":"api/arithmetics/subtract","path":"/tensor/api/arithmetics/subtract","sidebar":"apiSidebar"},{"id":"api/arithmetics/sum","path":"/tensor/api/arithmetics/sum","sidebar":"apiSidebar"},{"id":"api/arithmetics/sum_axis","path":"/tensor/api/arithmetics/sum_axis","sidebar":"apiSidebar"},{"id":"api/exponents/exp","path":"/tensor/api/exponents/exp","sidebar":"apiSidebar"},{"id":"api/exponents/exp2","path":"/tensor/api/exponents/exp2","sidebar":"apiSidebar"},{"id":"api/exponents/expm1","path":"/tensor/api/exponents/expm1","sidebar":"apiSidebar"},{"id":"api/exponents/log","path":"/tensor/api/exponents/log","sidebar":"apiSidebar"},{"id":"api/exponents/log10","path":"/tensor/api/exponents/log10","sidebar":"apiSidebar"},{"id":"api/exponents/log1p","path":"/tensor/api/exponents/log1p","sidebar":"apiSidebar"},{"id":"api/exponents/log2","path":"/tensor/api/exponents/log2","sidebar":"apiSidebar"},{"id":"api/hyperbolic/arccosh","path":"/tensor/api/hyperbolic/arccosh","sidebar":"apiSidebar"},{"id":"api/hyperbolic/arcsinh","path":"/tensor/api/hyperbolic/arcsinh","sidebar":"apiSidebar"},{"id":"api/hyperbolic/arctan2","path":"/tensor/api/hyperbolic/arctan2","sidebar":"apiSidebar"},{"id":"api/hyperbolic/arctanh","path":"/tensor/api/hyperbolic/arctanh","sidebar":"apiSidebar"},{"id":"api/hyperbolic/cosh","path":"/tensor/api/hyperbolic/cosh","sidebar":"apiSidebar"},{"id":"api/hyperbolic/sinc","path":"/tensor/api/hyperbolic/sinc","sidebar":"apiSidebar"},{"id":"api/hyperbolic/sinh","path":"/tensor/api/hyperbolic/sinh","sidebar":"apiSidebar"},{"id":"api/hyperbolic/tanh","path":"/tensor/api/hyperbolic/tanh","sidebar":"apiSidebar"},{"id":"api/linalg/cond","path":"/tensor/api/linalg/cond","sidebar":"apiSidebar"},{"id":"api/linalg/det","path":"/tensor/api/linalg/det","sidebar":"apiSidebar"},{"id":"api/linalg/dot","path":"/tensor/api/linalg/dot","sidebar":"apiSidebar"},{"id":"api/linalg/matmul","path":"/tensor/api/linalg/matmul","sidebar":"apiSidebar"},{"id":"api/linalg/matrix_rank","path":"/tensor/api/linalg/matrix_rank","sidebar":"apiSidebar"},{"id":"api/linalg/norm","path":"/tensor/api/linalg/norm","sidebar":"apiSidebar"},{"id":"api/linalg/outer","path":"/tensor/api/linalg/outer","sidebar":"apiSidebar"},{"id":"api/linalg/svd","path":"/tensor/api/linalg/svd","sidebar":"apiSidebar"},{"id":"api/manipulation/reshape","path":"/tensor/api/manipulation/reshape","sidebar":"apiSidebar"},{"id":"api/rounding/ceil","path":"/tensor/api/rounding/ceil","sidebar":"apiSidebar"},{"id":"api/rounding/clip","path":"/tensor/api/rounding/clip","sidebar":"apiSidebar"},{"id":"api/rounding/floor","path":"/tensor/api/rounding/floor","sidebar":"apiSidebar"},{"id":"api/rounding/trunc","path":"/tensor/api/rounding/trunc","sidebar":"apiSidebar"},{"id":"api/tensor/backward","path":"/tensor/api/tensor/backward","sidebar":"apiSidebar"},{"id":"api/tensor/detach","path":"/tensor/api/tensor/detach","sidebar":"apiSidebar"},{"id":"api/tensor/getData","path":"/tensor/api/tensor/getData","sidebar":"apiSidebar"},{"id":"api/tensor/getName","path":"/tensor/api/tensor/getName","sidebar":"apiSidebar"},{"id":"api/tensor/getShape","path":"/tensor/api/tensor/getShape","sidebar":"apiSidebar"},{"id":"api/tensor/getTape","path":"/tensor/api/tensor/getTape","sidebar":"apiSidebar"},{"id":"api/tensor/grad","path":"/tensor/api/tensor/grad","sidebar":"apiSidebar"},{"id":"api/tensor/graph","path":"/tensor/api/tensor/graph","sidebar":"apiSidebar"},{"id":"api/tensor/isGPU","path":"/tensor/api/tensor/isGPU","sidebar":"apiSidebar"},{"id":"api/tensor/isScalar","path":"/tensor/api/tensor/isScalar","sidebar":"apiSidebar"},{"id":"api/tensor/numElements","path":"/tensor/api/tensor/numElements","sidebar":"apiSidebar"},{"id":"api/tensor/requireGrad","path":"/tensor/api/tensor/requireGrad","sidebar":"apiSidebar"},{"id":"api/tensor/resetGradients","path":"/tensor/api/tensor/resetGradients","sidebar":"apiSidebar"},{"id":"api/tensor/toArray","path":"/tensor/api/tensor/toArray","sidebar":"apiSidebar"},{"id":"api/trigonometric/acos","path":"/tensor/api/trigonometric/acos","sidebar":"apiSidebar"},{"id":"api/trigonometric/arcsin","path":"/tensor/api/trigonometric/arcsin","sidebar":"apiSidebar"},{"id":"api/trigonometric/arctan","path":"/tensor/api/trigonometric/arctan","sidebar":"apiSidebar"},{"id":"api/trigonometric/cos","path":"/tensor/api/trigonometric/cos","sidebar":"apiSidebar"},{"id":"api/trigonometric/radians","path":"/tensor/api/trigonometric/radians","sidebar":"apiSidebar"},{"id":"api/trigonometric/sin","path":"/tensor/api/trigonometric/sin","sidebar":"apiSidebar"},{"id":"api/trigonometric/tan","path":"/tensor/api/trigonometric/tan","sidebar":"apiSidebar"},{"id":"intro/autograd-intro","path":"/tensor/intro/autograd-intro","sidebar":"apiSidebar"},{"id":"intro/autograd-model","path":"/tensor/intro/autograd-model","sidebar":"apiSidebar"},{"id":"intro/basic-usage","path":"/tensor/intro/basic-usage","sidebar":"apiSidebar"},{"id":"intro/installing","path":"/tensor/intro/installing","sidebar":"apiSidebar"},{"id":"low-level/arithmetic-operand","path":"/tensor/low-level/arithmetic-operand","sidebar":"apiSidebar"},{"id":"nn/activations","path":"/tensor/nn/activations","sidebar":"apiSidebar"},{"id":"nn/losses","path":"/tensor/nn/losses","sidebar":"apiSidebar"},{"id":"/category/numpower-autograd","path":"/tensor/category/numpower-autograd","sidebar":"apiSidebar"},{"id":"/category/api","path":"/tensor/category/api","sidebar":"apiSidebar"},{"id":"/category/tensor-api","path":"/tensor/category/tensor-api","sidebar":"apiSidebar"},{"id":"/category/arithmetics","path":"/tensor/category/arithmetics","sidebar":"apiSidebar"},{"id":"/category/exponential-and-logarithms","path":"/tensor/category/exponential-and-logarithms","sidebar":"apiSidebar"},{"id":"/category/hyperbolic-operations","path":"/tensor/category/hyperbolic-operations","sidebar":"apiSidebar"},{"id":"/category/linear-algebra","path":"/tensor/category/linear-algebra","sidebar":"apiSidebar"},{"id":"/category/rounding","path":"/tensor/category/rounding","sidebar":"apiSidebar"},{"id":"/category/trigonometric","path":"/tensor/category/trigonometric","sidebar":"apiSidebar"},{"id":"/category/manipulation","path":"/tensor/category/manipulation","sidebar":"apiSidebar"},{"id":"/category/neural-network-module","path":"/tensor/category/neural-network-module","sidebar":"apiSidebar"},{"id":"/category/low-level-classes-and-operations","path":"/tensor/category/low-level-classes-and-operations","sidebar":"apiSidebar"}],"draftIds":[],"sidebars":{"apiSidebar":{"link":{"path":"/tensor/category/numpower-autograd","label":"NumPower Autograd"}}}}],"breadcrumbs":true},"api":{"path":"/api","versions":[{"name":"current","label":"Next","isLast":true,"path":"/api","mainDocId":"intro","docs":[{"id":"devices-functions/ndarray-cpu","path":"/api/devices-functions/ndarray-cpu","sidebar":"apiSidebar"},{"id":"devices-functions/ndarray-gpu","path":"/api/devices-functions/ndarray-gpu","sidebar":"apiSidebar"},{"id":"devices-functions/ndarray-isgpu","path":"/api/devices-functions/ndarray-isgpu","sidebar":"apiSidebar"},{"id":"devices-functions/ndarray-setdevice","path":"/api/devices-functions/ndarray-setdevice","sidebar":"apiSidebar"},{"id":"image-support/ndarray-toimage","path":"/api/image-support/ndarray-toimage","sidebar":"apiSidebar"},{"id":"initializers/ndarray-arange","path":"/api/initializers/ndarray-arange","sidebar":"apiSidebar"},{"id":"initializers/ndarray-array","path":"/api/initializers/ndarray-array","sidebar":"apiSidebar"},{"id":"initializers/ndarray-identity","path":"/api/initializers/ndarray-identity","sidebar":"apiSidebar"},{"id":"initializers/ndarray-ones","path":"/api/initializers/ndarray-ones","sidebar":"apiSidebar"},{"id":"initializers/ndarray-zeros","path":"/api/initializers/ndarray-zeros","sidebar":"apiSidebar"},{"id":"intro","path":"/api/intro","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-cholesky","path":"/api/linear-algebra/ndarray-cholesky","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-cond","path":"/api/linear-algebra/ndarray-cond","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-det","path":"/api/linear-algebra/ndarray-det","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-dot","path":"/api/linear-algebra/ndarray-dot","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-eig","path":"/api/linear-algebra/ndarray-eig","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-inner","path":"/api/linear-algebra/ndarray-inner","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-inv","path":"/api/linear-algebra/ndarray-inv","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-lstsq","path":"/api/linear-algebra/ndarray-lstsq","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-lu","path":"/api/linear-algebra/ndarray-lu","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-matmul","path":"/api/linear-algebra/ndarray-matmul","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-matrixrank","path":"/api/linear-algebra/ndarray-matrixrank","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-norm","path":"/api/linear-algebra/ndarray-norm","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-outer","path":"/api/linear-algebra/ndarray-outer","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-qr","path":"/api/linear-algebra/ndarray-qr","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-solve","path":"/api/linear-algebra/ndarray-solve","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-svd","path":"/api/linear-algebra/ndarray-svd","sidebar":"apiSidebar"},{"id":"linear-algebra/ndarray-trace","path":"/api/linear-algebra/ndarray-trace","sidebar":"apiSidebar"},{"id":"logic/ndarray-all","path":"/api/logic/ndarray-all","sidebar":"apiSidebar"},{"id":"logic/ndarray-allclose","path":"/api/logic/ndarray-allclose","sidebar":"apiSidebar"},{"id":"logic/ndarray-equal","path":"/api/logic/ndarray-equal","sidebar":"apiSidebar"},{"id":"logic/ndarray-greater","path":"/api/logic/ndarray-greater","sidebar":"apiSidebar"},{"id":"logic/ndarray-greater_equal","path":"/api/logic/ndarray-greater_equal","sidebar":"apiSidebar"},{"id":"logic/ndarray-less","path":"/api/logic/ndarray-less","sidebar":"apiSidebar"},{"id":"logic/ndarray-less_equal","path":"/api/logic/ndarray-less_equal","sidebar":"apiSidebar"},{"id":"logic/ndarray-not_equal","path":"/api/logic/ndarray-not_equal","sidebar":"apiSidebar"},{"id":"low-level-debug/ndarray-dump","path":"/api/low-level-debug/ndarray-dump","sidebar":"apiSidebar"},{"id":"low-level-debug/ndarray-dumpDevices","path":"/api/low-level-debug/ndarray-dumpDevices","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-atleast_1d","path":"/api/manipulation/ndarray-atleast_1d","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-atleast_2d","path":"/api/manipulation/ndarray-atleast_2d","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-atleast_3d","path":"/api/manipulation/ndarray-atleast_3d","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-copy","path":"/api/manipulation/ndarray-copy","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-expand_dims","path":"/api/manipulation/ndarray-expand_dims","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-flat","path":"/api/manipulation/ndarray-flat","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-reshape","path":"/api/manipulation/ndarray-reshape","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-shape","path":"/api/manipulation/ndarray-shape","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-size","path":"/api/manipulation/ndarray-size","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-toArray","path":"/api/manipulation/ndarray-toArray","sidebar":"apiSidebar"},{"id":"manipulation/ndarray-transpose","path":"/api/manipulation/ndarray-transpose","sidebar":"apiSidebar"},{"id":"mathematical-functions/arithmetic/ndarray-add","path":"/api/mathematical-functions/arithmetic/ndarray-add","sidebar":"apiSidebar"},{"id":"mathematical-functions/arithmetic/ndarray-divide","path":"/api/mathematical-functions/arithmetic/ndarray-divide","sidebar":"apiSidebar"},{"id":"mathematical-functions/arithmetic/ndarray-mod","path":"/api/mathematical-functions/arithmetic/ndarray-mod","sidebar":"apiSidebar"},{"id":"mathematical-functions/arithmetic/ndarray-multiply","path":"/api/mathematical-functions/arithmetic/ndarray-multiply","sidebar":"apiSidebar"},{"id":"mathematical-functions/arithmetic/ndarray-negative","path":"/api/mathematical-functions/arithmetic/ndarray-negative","sidebar":"apiSidebar"},{"id":"mathematical-functions/arithmetic/ndarray-pow","path":"/api/mathematical-functions/arithmetic/ndarray-pow","sidebar":"apiSidebar"},{"id":"mathematical-functions/arithmetic/ndarray-subtract","path":"/api/mathematical-functions/arithmetic/ndarray-subtract","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-exp","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-exp","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-exp2","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-exp2","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-expm1","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-expm1","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-log","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-log","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-log10","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-log10","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-log1p","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-log1p","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-log2","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-log2","sidebar":"apiSidebar"},{"id":"mathematical-functions/exponents-and-logarithms/ndarray-logb","path":"/api/mathematical-functions/exponents-and-logarithms/ndarray-logb","sidebar":"apiSidebar"},{"id":"mathematical-functions/extrema-finding/ndarray-max","path":"/api/mathematical-functions/extrema-finding/ndarray-max","sidebar":"apiSidebar"},{"id":"mathematical-functions/extrema-finding/ndarray-min","path":"/api/mathematical-functions/extrema-finding/ndarray-min","sidebar":"apiSidebar"},{"id":"mathematical-functions/hyperbolic/ndarray-arccosh","path":"/api/mathematical-functions/hyperbolic/ndarray-arccosh","sidebar":"apiSidebar"},{"id":"mathematical-functions/hyperbolic/ndarray-arcsinh","path":"/api/mathematical-functions/hyperbolic/ndarray-arcsinh","sidebar":"apiSidebar"},{"id":"mathematical-functions/hyperbolic/ndarray-arctanh","path":"/api/mathematical-functions/hyperbolic/ndarray-arctanh","sidebar":"apiSidebar"},{"id":"mathematical-functions/hyperbolic/ndarray-cosh","path":"/api/mathematical-functions/hyperbolic/ndarray-cosh","sidebar":"apiSidebar"},{"id":"mathematical-functions/hyperbolic/ndarray-sinh","path":"/api/mathematical-functions/hyperbolic/ndarray-sinh","sidebar":"apiSidebar"},{"id":"mathematical-functions/hyperbolic/ndarray-tanh","path":"/api/mathematical-functions/hyperbolic/ndarray-tanh","sidebar":"apiSidebar"},{"id":"mathematical-functions/miscellaneous/ndarray-abs","path":"/api/mathematical-functions/miscellaneous/ndarray-abs","sidebar":"apiSidebar"},{"id":"mathematical-functions/miscellaneous/ndarray-clip","path":"/api/mathematical-functions/miscellaneous/ndarray-clip","sidebar":"apiSidebar"},{"id":"mathematical-functions/miscellaneous/ndarray-sign","path":"/api/mathematical-functions/miscellaneous/ndarray-sign","sidebar":"apiSidebar"},{"id":"mathematical-functions/miscellaneous/ndarray-sinc","path":"/api/mathematical-functions/miscellaneous/ndarray-sinc","sidebar":"apiSidebar"},{"id":"mathematical-functions/miscellaneous/ndarray-sqrt","path":"/api/mathematical-functions/miscellaneous/ndarray-sqrt","sidebar":"apiSidebar"},{"id":"mathematical-functions/miscellaneous/ndarray-square","path":"/api/mathematical-functions/miscellaneous/ndarray-square","sidebar":"apiSidebar"},{"id":"mathematical-functions/rounding/ndarray-ceil","path":"/api/mathematical-functions/rounding/ndarray-ceil","sidebar":"apiSidebar"},{"id":"mathematical-functions/rounding/ndarray-fix","path":"/api/mathematical-functions/rounding/ndarray-fix","sidebar":"apiSidebar"},{"id":"mathematical-functions/rounding/ndarray-floor","path":"/api/mathematical-functions/rounding/ndarray-floor","sidebar":"apiSidebar"},{"id":"mathematical-functions/rounding/ndarray-rint","path":"/api/mathematical-functions/rounding/ndarray-rint","sidebar":"apiSidebar"},{"id":"mathematical-functions/rounding/ndarray-round","path":"/api/mathematical-functions/rounding/ndarray-round","sidebar":"apiSidebar"},{"id":"mathematical-functions/rounding/ndarray-trunc","path":"/api/mathematical-functions/rounding/ndarray-trunc","sidebar":"apiSidebar"},{"id":"mathematical-functions/sum-products-differences/ndarray-prod","path":"/api/mathematical-functions/sum-products-differences/ndarray-prod","sidebar":"apiSidebar"},{"id":"mathematical-functions/sum-products-differences/ndarray-sum","path":"/api/mathematical-functions/sum-products-differences/ndarray-sum","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-arccos","path":"/api/mathematical-functions/trigonometric/ndarray-arccos","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-arcsin","path":"/api/mathematical-functions/trigonometric/ndarray-arcsin","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-arctan","path":"/api/mathematical-functions/trigonometric/ndarray-arctan","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-cos","path":"/api/mathematical-functions/trigonometric/ndarray-cos","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-degrees","path":"/api/mathematical-functions/trigonometric/ndarray-degrees","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-radians","path":"/api/mathematical-functions/trigonometric/ndarray-radians","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-sin","path":"/api/mathematical-functions/trigonometric/ndarray-sin","sidebar":"apiSidebar"},{"id":"mathematical-functions/trigonometric/ndarray-tan","path":"/api/mathematical-functions/trigonometric/ndarray-tan","sidebar":"apiSidebar"},{"id":"random/ndarray-normal","path":"/api/random/ndarray-normal","sidebar":"apiSidebar"},{"id":"random/ndarray-poisson","path":"/api/random/ndarray-poisson","sidebar":"apiSidebar"},{"id":"random/ndarray-standard_normal","path":"/api/random/ndarray-standard_normal","sidebar":"apiSidebar"},{"id":"random/ndarray-uniform","path":"/api/random/ndarray-uniform","sidebar":"apiSidebar"},{"id":"signal-processing/ndarray-convolve2d","path":"/api/signal-processing/ndarray-convolve2d","sidebar":"apiSidebar"},{"id":"statistics/ndarray-average","path":"/api/statistics/ndarray-average","sidebar":"apiSidebar"},{"id":"statistics/ndarray-mean","path":"/api/statistics/ndarray-mean","sidebar":"apiSidebar"},{"id":"statistics/ndarray-median","path":"/api/statistics/ndarray-median","sidebar":"apiSidebar"},{"id":"statistics/ndarray-quantile","path":"/api/statistics/ndarray-quantile","sidebar":"apiSidebar"},{"id":"statistics/ndarray-std","path":"/api/statistics/ndarray-std","sidebar":"apiSidebar"},{"id":"statistics/ndarray-variance","path":"/api/statistics/ndarray-variance","sidebar":"apiSidebar"},{"id":"/category/devices-functions","path":"/api/category/devices-functions","sidebar":"apiSidebar"},{"id":"/category/math","path":"/api/category/math","sidebar":"apiSidebar"},{"id":"/category/arithmetics","path":"/api/category/arithmetics","sidebar":"apiSidebar"},{"id":"/category/exponents-and-logarithms","path":"/api/category/exponents-and-logarithms","sidebar":"apiSidebar"},{"id":"/category/extrema-finding","path":"/api/category/extrema-finding","sidebar":"apiSidebar"},{"id":"/category/hyperbolic","path":"/api/category/hyperbolic","sidebar":"apiSidebar"},{"id":"/category/miscellaneous","path":"/api/category/miscellaneous","sidebar":"apiSidebar"},{"id":"/category/rounding","path":"/api/category/rounding","sidebar":"apiSidebar"},{"id":"/category/sums-products-differences","path":"/api/category/sums-products-differences","sidebar":"apiSidebar"},{"id":"/category/trigonometric","path":"/api/category/trigonometric","sidebar":"apiSidebar"},{"id":"/category/initializers","path":"/api/category/initializers","sidebar":"apiSidebar"},{"id":"/category/linear-algebra","path":"/api/category/linear-algebra","sidebar":"apiSidebar"},{"id":"/category/logic-functions","path":"/api/category/logic-functions","sidebar":"apiSidebar"},{"id":"/category/manipulation","path":"/api/category/manipulation","sidebar":"apiSidebar"},{"id":"/category/random","path":"/api/category/random","sidebar":"apiSidebar"},{"id":"/category/signal-processing","path":"/api/category/signal-processing","sidebar":"apiSidebar"},{"id":"/category/statistics","path":"/api/category/statistics","sidebar":"apiSidebar"},{"id":"/category/image-processing","path":"/api/category/image-processing","sidebar":"apiSidebar"},{"id":"/category/low-level-debug","path":"/api/category/low-level-debug","sidebar":"apiSidebar"}],"draftIds":[],"sidebars":{"apiSidebar":{"link":{"path":"/api/intro","label":"intro"}}}}],"breadcrumbs":true}}}'),o=JSON.parse('{"defaultLocale":"en","locales":["en"],"path":"i18n","currentLocale":"en","localeConfigs":{"en":{"label":"English","direction":"ltr","htmlLang":"en","calendar":"gregory","path":"en"}}}');var s=n(57529);const l=JSON.parse('{"docusaurusVersion":"2.4.1","siteVersion":"0.0.0","pluginVersions":{"docusaurus-plugin-content-docs":{"type":"package","name":"@docusaurus/plugin-content-docs","version":"2.4.1"},"docusaurus-plugin-content-blog":{"type":"package","name":"@docusaurus/plugin-content-blog","version":"2.4.1"},"docusaurus-plugin-content-pages":{"type":"package","name":"@docusaurus/plugin-content-pages","version":"2.4.1"},"docusaurus-plugin-sitemap":{"type":"package","name":"@docusaurus/plugin-sitemap","version":"2.4.1"},"docusaurus-theme-classic":{"type":"package","name":"@docusaurus/theme-classic","version":"2.4.1"},"docusaurus-lunr-search":{"type":"package","name":"docusaurus-lunr-search","version":"2.3.2"},"docusaurus-theme-mermaid":{"type":"package","name":"@docusaurus/theme-mermaid","version":"2.4.1"}}}'),c={siteConfig:r.default,siteMetadata:l,globalData:i,i18n:o,codeTranslations:s},u=a.createContext(c);function d(e){let{children:t}=e;return a.createElement(u.Provider,{value:c},t)}},44763:(e,t,n)=>{"use strict";n.d(t,{Z:()=>p});var a=n(67294),r=n(10412),i=n(35742),o=n(18780),s=n(84173);function l(e){let{error:t,tryAgain:n}=e;return a.createElement("div",{style:{display:"flex",flexDirection:"column",justifyContent:"center",alignItems:"flex-start",minHeight:"100vh",width:"100%",maxWidth:"80ch",fontSize:"20px",margin:"0 auto",padding:"1rem"}},a.createElement("h1",{style:{fontSize:"3rem"}},"This page crashed"),a.createElement("button",{type:"button",onClick:n,style:{margin:"1rem 0",fontSize:"2rem",cursor:"pointer",borderRadius:20,padding:"1rem"}},"Try again"),a.createElement(c,{error:t}))}function c(e){let{error:t}=e;const n=(0,o.getErrorCausalChain)(t).map((e=>e.message)).join("\n\nCause:\n");return a.createElement("p",{style:{whiteSpace:"pre-wrap"}},n)}function u(e){let{error:t,tryAgain:n}=e;return a.createElement(p,{fallback:()=>a.createElement(l,{error:t,tryAgain:n})},a.createElement(i.Z,null,a.createElement("title",null,"Page Error")),a.createElement(s.Z,null,a.createElement(l,{error:t,tryAgain:n})))}const d=e=>a.createElement(u,e);class p extends a.Component{constructor(e){super(e),this.state={error:null}}componentDidCatch(e){r.Z.canUseDOM&&this.setState({error:e})}render(){const{children:e}=this.props,{error:t}=this.state;if(t){const e={error:t,tryAgain:()=>this.setState({error:null})};return(this.props.fallback??d)(e)}return e??null}}},10412:(e,t,n)=>{"use strict";n.d(t,{Z:()=>r});const a="undefined"!=typeof window&&"document"in window&&"createElement"in window.document,r={canUseDOM:a,canUseEventListeners:a&&("addEventListener"in window||"attachEvent"in window),canUseIntersectionObserver:a&&"IntersectionObserver"in window,canUseViewport:a&&"screen"in window}},35742:(e,t,n)=>{"use strict";n.d(t,{Z:()=>i});var a=n(67294),r=n(70405);function i(e){return a.createElement(r.ql,e)}},39960:(e,t,n)=>{"use strict";n.d(t,{Z:()=>f});var a=n(87462),r=n(67294),i=n(73727),o=n(18780),s=n(52263),l=n(13919),c=n(10412);const u=r.createContext({collectLink:()=>{}});var d=n(44996);function p(e,t){let{isNavLink:n,to:p,href:f,activeClassName:m,isActive:h,"data-noBrokenLinkCheck":b,autoAddBaseUrl:g=!0,...y}=e;const{siteConfig:{trailingSlash:v,baseUrl:w}}=(0,s.Z)(),{withBaseUrl:S}=(0,d.C)(),x=(0,r.useContext)(u),_=(0,r.useRef)(null);(0,r.useImperativeHandle)(t,(()=>_.current));const E=p||f;const k=(0,l.Z)(E),C=E?.replace("pathname://","");let T=void 0!==C?(P=C,g&&(e=>e.startsWith("/"))(P)?S(P):P):void 0;var P;T&&k&&(T=(0,o.applyTrailingSlash)(T,{trailingSlash:v,baseUrl:w}));const A=(0,r.useRef)(!1),N=n?i.OL:i.rU,L=c.Z.canUseIntersectionObserver,O=(0,r.useRef)(),I=()=>{A.current||null==T||(window.docusaurus.preload(T),A.current=!0)};(0,r.useEffect)((()=>(!L&&k&&null!=T&&window.docusaurus.prefetch(T),()=>{L&&O.current&&O.current.disconnect()})),[O,T,L,k]);const R=T?.startsWith("#")??!1,D=!T||!k||R;return D||b||x.collectLink(T),D?r.createElement("a",(0,a.Z)({ref:_,href:T},E&&!k&&{target:"_blank",rel:"noopener noreferrer"},y)):r.createElement(N,(0,a.Z)({},y,{onMouseEnter:I,onTouchStart:I,innerRef:e=>{_.current=e,L&&e&&k&&(O.current=new window.IntersectionObserver((t=>{t.forEach((t=>{e===t.target&&(t.isIntersecting||t.intersectionRatio>0)&&(O.current.unobserve(e),O.current.disconnect(),null!=T&&window.docusaurus.prefetch(T))}))})),O.current.observe(e))},to:T},n&&{isActive:h,activeClassName:m}))}const f=r.forwardRef(p)},95999:(e,t,n)=>{"use strict";n.d(t,{Z:()=>l,I:()=>s});var a=n(67294);function r(e,t){const n=e.split(/(\{\w+\})/).map(((e,n)=>{if(n%2==1){const n=t?.[e.slice(1,-1)];if(void 0!==n)return n}return e}));return n.some((e=>(0,a.isValidElement)(e)))?n.map(((e,t)=>(0,a.isValidElement)(e)?a.cloneElement(e,{key:t}):e)).filter((e=>""!==e)):n.join("")}var i=n(57529);function o(e){let{id:t,message:n}=e;if(void 0===t&&void 0===n)throw new Error("Docusaurus translation declarations must have at least a translation id or a default translation message");return i[t??n]??n??t}function s(e,t){let{message:n,id:a}=e;return r(o({message:n,id:a}),t)}function l(e){let{children:t,id:n,values:i}=e;if(t&&"string"!=typeof t)throw console.warn("Illegal children",t),new Error("The Docusaurus component only accept simple string values");const s=o({message:t,id:n});return a.createElement(a.Fragment,null,r(s,i))}},29935:(e,t,n)=>{"use strict";n.d(t,{m:()=>a});const a="default"},13919:(e,t,n)=>{"use strict";function a(e){return/^(?:\w*:|\/\/)/.test(e)}function r(e){return void 0!==e&&!a(e)}n.d(t,{Z:()=>r,b:()=>a})},44996:(e,t,n)=>{"use strict";n.d(t,{C:()=>o,Z:()=>s});var a=n(67294),r=n(52263),i=n(13919);function o(){const{siteConfig:{baseUrl:e,url:t}}=(0,r.Z)(),n=(0,a.useCallback)(((n,a)=>function(e,t,n,a){let{forcePrependBaseUrl:r=!1,absolute:o=!1}=void 0===a?{}:a;if(!n||n.startsWith("#")||(0,i.b)(n))return n;if(r)return t+n.replace(/^\//,"");if(n===t.replace(/\/$/,""))return t;const s=n.startsWith(t)?n:t+n.replace(/^\//,"");return o?e+s:s}(t,e,n,a)),[t,e]);return{withBaseUrl:n}}function s(e,t){void 0===t&&(t={});const{withBaseUrl:n}=o();return n(e,t)}},52263:(e,t,n)=>{"use strict";n.d(t,{Z:()=>i});var a=n(67294),r=n(58940);function i(){return(0,a.useContext)(r._)}},28084:(e,t,n)=>{"use strict";n.d(t,{OD:()=>i,eZ:()=>o});var a=n(52263),r=n(29935);function i(e,t){void 0===t&&(t={});const n=function(){const{globalData:e}=(0,a.Z)();return e}()[e];if(!n&&t.failfast)throw new Error(`Docusaurus plugin global data not found for "${e}" plugin.`);return n}function o(e,t,n){void 0===t&&(t=r.m),void 0===n&&(n={});const a=i(e),o=a?.[t];if(!o&&n.failfast)throw new Error(`Docusaurus plugin global data not found for "${e}" plugin with id "${t}".`);return o}},72389:(e,t,n)=>{"use strict";n.d(t,{Z:()=>i});var a=n(67294),r=n(98934);function i(){return(0,a.useContext)(r._)}},99670:(e,t,n)=>{"use strict";n.d(t,{Z:()=>r});const a=e=>"object"==typeof e&&!!e&&Object.keys(e).length>0;function r(e){const t={};return function e(n,r){Object.entries(n).forEach((n=>{let[i,o]=n;const s=r?`${r}.${i}`:i;a(o)?e(o,s):t[s]=o}))}(e),t}},30226:(e,t,n)=>{"use strict";n.d(t,{_:()=>r,z:()=>i});var a=n(67294);const r=a.createContext(null);function i(e){let{children:t,value:n}=e;const i=a.useContext(r),o=(0,a.useMemo)((()=>function(e){let{parent:t,value:n}=e;if(!t){if(!n)throw new Error("Unexpected: no Docusaurus route context found");if(!("plugin"in n))throw new Error("Unexpected: Docusaurus topmost route context has no `plugin` attribute");return n}const a={...t.data,...n?.data};return{plugin:t.plugin,data:a}}({parent:i,value:n})),[i,n]);return a.createElement(r.Provider,{value:o},t)}},94104:(e,t,n)=>{"use strict";n.d(t,{Iw:()=>f,gA:()=>u,_r:()=>l,Jo:()=>m,zh:()=>c,yW:()=>p,gB:()=>d});var a=n(16550),r=n(28084);const i=e=>e.versions.find((e=>e.isLast));function o(e,t){const n=function(e,t){const n=i(e);return[...e.versions.filter((e=>e!==n)),n].find((e=>!!(0,a.LX)(t,{path:e.path,exact:!1,strict:!1})))}(e,t),r=n?.docs.find((e=>!!(0,a.LX)(t,{path:e.path,exact:!0,strict:!1})));return{activeVersion:n,activeDoc:r,alternateDocVersions:r?function(t){const n={};return e.versions.forEach((e=>{e.docs.forEach((a=>{a.id===t&&(n[e.name]=a)}))})),n}(r.id):{}}}const s={},l=()=>(0,r.OD)("docusaurus-plugin-content-docs")??s,c=e=>(0,r.eZ)("docusaurus-plugin-content-docs",e,{failfast:!0});function u(e){void 0===e&&(e={});const t=l(),{pathname:n}=(0,a.TH)();return function(e,t,n){void 0===n&&(n={});const r=Object.entries(e).sort(((e,t)=>t[1].path.localeCompare(e[1].path))).find((e=>{let[,n]=e;return!!(0,a.LX)(t,{path:n.path,exact:!1,strict:!1})})),i=r?{pluginId:r[0],pluginData:r[1]}:void 0;if(!i&&n.failfast)throw new Error(`Can't find active docs plugin for "${t}" pathname, while it was expected to be found. Maybe you tried to use a docs feature that can only be used on a docs-related page? Existing docs plugin paths are: ${Object.values(e).map((e=>e.path)).join(", ")}`);return i}(t,n,e)}function d(e){return c(e).versions}function p(e){const t=c(e);return i(t)}function f(e){const t=c(e),{pathname:n}=(0,a.TH)();return o(t,n)}function m(e){const t=c(e),{pathname:n}=(0,a.TH)();return function(e,t){const n=i(e);return{latestDocSuggestion:o(e,t).alternateDocVersions[n.name],latestVersionSuggestion:n}}(t,n)}},18320:(e,t,n)=>{"use strict";n.r(t),n.d(t,{default:()=>i});var a=n(74865),r=n.n(a);r().configure({showSpinner:!1});const i={onRouteUpdate(e){let{location:t,previousLocation:n}=e;if(n&&t.pathname!==n.pathname){const e=window.setTimeout((()=>{r().start()}),200);return()=>window.clearTimeout(e)}},onRouteDidUpdate(){r().done()}}},3310:(e,t,n)=>{"use strict";n.r(t);var a=n(87410),r=n(36809);!function(e){const{themeConfig:{prism:t}}=r.default,{additionalLanguages:a}=t;globalThis.Prism=e,a.forEach((e=>{n(47147)(`./prism-${e}`)})),delete globalThis.Prism}(a.Z)},39471:(e,t,n)=>{"use strict";n.d(t,{Z:()=>i});var a=n(67294);const r={iconExternalLink:"iconExternalLink_nPIU"};function i(e){let{width:t=13.5,height:n=13.5}=e;return a.createElement("svg",{width:t,height:n,"aria-hidden":"true",viewBox:"0 0 24 24",className:r.iconExternalLink},a.createElement("path",{fill:"currentColor",d:"M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"}))}},84173:(e,t,n)=>{"use strict";n.d(t,{Z:()=>mt});var a=n(67294),r=n(86010),i=n(44763),o=n(1944),s=n(87462),l=n(16550),c=n(95999),u=n(85936);const d="__docusaurus_skipToContent_fallback";function p(e){e.setAttribute("tabindex","-1"),e.focus(),e.removeAttribute("tabindex")}function f(){const e=(0,a.useRef)(null),{action:t}=(0,l.k6)(),n=(0,a.useCallback)((e=>{e.preventDefault();const t=document.querySelector("main:first-of-type")??document.getElementById(d);t&&p(t)}),[]);return(0,u.S)((n=>{let{location:a}=n;e.current&&!a.hash&&"PUSH"===t&&p(e.current)})),{containerRef:e,onClick:n}}const m=(0,c.I)({id:"theme.common.skipToMainContent",description:"The skip to content label used for accessibility, allowing to rapidly navigate to main content with keyboard tab/enter navigation",message:"Skip to main content"});function h(e){const t=e.children??m,{containerRef:n,onClick:r}=f();return a.createElement("div",{ref:n,role:"region","aria-label":m},a.createElement("a",(0,s.Z)({},e,{href:`#${d}`,onClick:r}),t))}var b=n(35281),g=n(19727);const y={skipToContent:"skipToContent_fXgn"};function v(){return a.createElement(h,{className:y.skipToContent})}var w=n(86668),S=n(59689);function x(e){let{width:t=21,height:n=21,color:r="currentColor",strokeWidth:i=1.2,className:o,...l}=e;return a.createElement("svg",(0,s.Z)({viewBox:"0 0 15 15",width:t,height:n},l),a.createElement("g",{stroke:r,strokeWidth:i},a.createElement("path",{d:"M.75.75l13.5 13.5M14.25.75L.75 14.25"})))}const _={closeButton:"closeButton_CVFx"};function E(e){return a.createElement("button",(0,s.Z)({type:"button","aria-label":(0,c.I)({id:"theme.AnnouncementBar.closeButtonAriaLabel",message:"Close",description:"The ARIA label for close button of announcement bar"})},e,{className:(0,r.Z)("clean-btn close",_.closeButton,e.className)}),a.createElement(x,{width:14,height:14,strokeWidth:3.1}))}const k={content:"content_knG7"};function C(e){const{announcementBar:t}=(0,w.L)(),{content:n}=t;return a.createElement("div",(0,s.Z)({},e,{className:(0,r.Z)(k.content,e.className),dangerouslySetInnerHTML:{__html:n}}))}const T={announcementBar:"announcementBar_mb4j",announcementBarPlaceholder:"announcementBarPlaceholder_vyr4",announcementBarClose:"announcementBarClose_gvF7",announcementBarContent:"announcementBarContent_xLdY"};function P(){const{announcementBar:e}=(0,w.L)(),{isActive:t,close:n}=(0,S.nT)();if(!t)return null;const{backgroundColor:r,textColor:i,isCloseable:o}=e;return a.createElement("div",{className:T.announcementBar,style:{backgroundColor:r,color:i},role:"banner"},o&&a.createElement("div",{className:T.announcementBarPlaceholder}),a.createElement(C,{className:T.announcementBarContent}),o&&a.createElement(E,{onClick:n,className:T.announcementBarClose}))}var A=n(93163),N=n(12466);var L=n(902),O=n(13102);const I=a.createContext(null);function R(e){let{children:t}=e;const n=function(){const e=(0,A.e)(),t=(0,O.HY)(),[n,r]=(0,a.useState)(!1),i=null!==t.component,o=(0,L.D9)(i);return(0,a.useEffect)((()=>{i&&!o&&r(!0)}),[i,o]),(0,a.useEffect)((()=>{i?e.shown||r(!0):r(!1)}),[e.shown,i]),(0,a.useMemo)((()=>[n,r]),[n])}();return a.createElement(I.Provider,{value:n},t)}function D(e){if(e.component){const t=e.component;return a.createElement(t,e.props)}}function M(){const e=(0,a.useContext)(I);if(!e)throw new L.i6("NavbarSecondaryMenuDisplayProvider");const[t,n]=e,r=(0,a.useCallback)((()=>n(!1)),[n]),i=(0,O.HY)();return(0,a.useMemo)((()=>({shown:t,hide:r,content:D(i)})),[r,i,t])}function z(e){let{header:t,primaryMenu:n,secondaryMenu:i}=e;const{shown:o}=M();return a.createElement("div",{className:"navbar-sidebar"},t,a.createElement("div",{className:(0,r.Z)("navbar-sidebar__items",{"navbar-sidebar__items--show-secondary":o})},a.createElement("div",{className:"navbar-sidebar__item menu"},n),a.createElement("div",{className:"navbar-sidebar__item menu"},i)))}var F=n(92949),B=n(72389);function j(e){return a.createElement("svg",(0,s.Z)({viewBox:"0 0 24 24",width:24,height:24},e),a.createElement("path",{fill:"currentColor",d:"M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z"}))}function $(e){return a.createElement("svg",(0,s.Z)({viewBox:"0 0 24 24",width:24,height:24},e),a.createElement("path",{fill:"currentColor",d:"M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z"}))}const U={toggle:"toggle_vylO",toggleButton:"toggleButton_gllP",darkToggleIcon:"darkToggleIcon_wfgR",lightToggleIcon:"lightToggleIcon_pyhR",toggleButtonDisabled:"toggleButtonDisabled_aARS"};function Z(e){let{className:t,buttonClassName:n,value:i,onChange:o}=e;const s=(0,B.Z)(),l=(0,c.I)({message:"Switch between dark and light mode (currently {mode})",id:"theme.colorToggle.ariaLabel",description:"The ARIA label for the navbar color mode toggle"},{mode:"dark"===i?(0,c.I)({message:"dark mode",id:"theme.colorToggle.ariaLabel.mode.dark",description:"The name for the dark color mode"}):(0,c.I)({message:"light mode",id:"theme.colorToggle.ariaLabel.mode.light",description:"The name for the light color mode"})});return a.createElement("div",{className:(0,r.Z)(U.toggle,t)},a.createElement("button",{className:(0,r.Z)("clean-btn",U.toggleButton,!s&&U.toggleButtonDisabled,n),type:"button",onClick:()=>o("dark"===i?"light":"dark"),disabled:!s,title:l,"aria-label":l,"aria-live":"polite"},a.createElement(j,{className:(0,r.Z)(U.toggleIcon,U.lightToggleIcon)}),a.createElement($,{className:(0,r.Z)(U.toggleIcon,U.darkToggleIcon)})))}const H=a.memo(Z),G={darkNavbarColorModeToggle:"darkNavbarColorModeToggle_X3D1"};function q(e){let{className:t}=e;const n=(0,w.L)().navbar.style,r=(0,w.L)().colorMode.disableSwitch,{colorMode:i,setColorMode:o}=(0,F.I)();return r?null:a.createElement(H,{className:t,buttonClassName:"dark"===n?G.darkNavbarColorModeToggle:void 0,value:i,onChange:o})}var V=n(21327);function W(){return a.createElement(V.Z,{className:"navbar__brand",imageClassName:"navbar__logo",titleClassName:"navbar__title text--truncate"})}function Y(){const e=(0,A.e)();return a.createElement("button",{type:"button","aria-label":(0,c.I)({id:"theme.docs.sidebar.closeSidebarButtonAriaLabel",message:"Close navigation bar",description:"The ARIA label for close button of mobile sidebar"}),className:"clean-btn navbar-sidebar__close",onClick:()=>e.toggle()},a.createElement(x,{color:"var(--ifm-color-emphasis-600)"}))}function K(){return a.createElement("div",{className:"navbar-sidebar__brand"},a.createElement(W,null),a.createElement(q,{className:"margin-right--md"}),a.createElement(Y,null))}var X=n(39960),Q=n(44996),J=n(13919);function ee(e,t){return void 0!==e&&void 0!==t&&new RegExp(e,"gi").test(t)}var te=n(39471);function ne(e){let{activeBasePath:t,activeBaseRegex:n,to:r,href:i,label:o,html:l,isDropdownLink:c,prependBaseUrlToHref:u,...d}=e;const p=(0,Q.Z)(r),f=(0,Q.Z)(t),m=(0,Q.Z)(i,{forcePrependBaseUrl:!0}),h=o&&i&&!(0,J.Z)(i),b=l?{dangerouslySetInnerHTML:{__html:l}}:{children:a.createElement(a.Fragment,null,o,h&&a.createElement(te.Z,c&&{width:12,height:12}))};return i?a.createElement(X.Z,(0,s.Z)({href:u?m:i},d,b)):a.createElement(X.Z,(0,s.Z)({to:p,isNavLink:!0},(t||n)&&{isActive:(e,t)=>n?ee(n,t.pathname):t.pathname.startsWith(f)},d,b))}function ae(e){let{className:t,isDropdownItem:n=!1,...i}=e;const o=a.createElement(ne,(0,s.Z)({className:(0,r.Z)(n?"dropdown__link":"navbar__item navbar__link",t),isDropdownLink:n},i));return n?a.createElement("li",null,o):o}function re(e){let{className:t,isDropdownItem:n,...i}=e;return a.createElement("li",{className:"menu__list-item"},a.createElement(ne,(0,s.Z)({className:(0,r.Z)("menu__link",t)},i)))}function ie(e){let{mobile:t=!1,position:n,...r}=e;const i=t?re:ae;return a.createElement(i,(0,s.Z)({},r,{activeClassName:r.activeClassName??(t?"menu__link--active":"navbar__link--active")}))}var oe=n(86043),se=n(48596),le=n(52263);function ce(e,t){return e.some((e=>function(e,t){return!!(0,se.Mg)(e.to,t)||!!ee(e.activeBaseRegex,t)||!(!e.activeBasePath||!t.startsWith(e.activeBasePath))}(e,t)))}function ue(e){let{items:t,position:n,className:i,onClick:o,...l}=e;const c=(0,a.useRef)(null),[u,d]=(0,a.useState)(!1);return(0,a.useEffect)((()=>{const e=e=>{c.current&&!c.current.contains(e.target)&&d(!1)};return document.addEventListener("mousedown",e),document.addEventListener("touchstart",e),document.addEventListener("focusin",e),()=>{document.removeEventListener("mousedown",e),document.removeEventListener("touchstart",e),document.removeEventListener("focusin",e)}}),[c]),a.createElement("div",{ref:c,className:(0,r.Z)("navbar__item","dropdown","dropdown--hoverable",{"dropdown--right":"right"===n,"dropdown--show":u})},a.createElement(ne,(0,s.Z)({"aria-haspopup":"true","aria-expanded":u,role:"button",href:l.to?void 0:"#",className:(0,r.Z)("navbar__link",i)},l,{onClick:l.to?void 0:e=>e.preventDefault(),onKeyDown:e=>{"Enter"===e.key&&(e.preventDefault(),d(!u))}}),l.children??l.label),a.createElement("ul",{className:"dropdown__menu"},t.map(((e,t)=>a.createElement(Te,(0,s.Z)({isDropdownItem:!0,activeClassName:"dropdown__link--active"},e,{key:t}))))))}function de(e){let{items:t,className:n,position:i,onClick:o,...c}=e;const u=function(){const{siteConfig:{baseUrl:e}}=(0,le.Z)(),{pathname:t}=(0,l.TH)();return t.replace(e,"/")}(),d=ce(t,u),{collapsed:p,toggleCollapsed:f,setCollapsed:m}=(0,oe.u)({initialState:()=>!d});return(0,a.useEffect)((()=>{d&&m(!d)}),[u,d,m]),a.createElement("li",{className:(0,r.Z)("menu__list-item",{"menu__list-item--collapsed":p})},a.createElement(ne,(0,s.Z)({role:"button",className:(0,r.Z)("menu__link menu__link--sublist menu__link--sublist-caret",n)},c,{onClick:e=>{e.preventDefault(),f()}}),c.children??c.label),a.createElement(oe.z,{lazy:!0,as:"ul",className:"menu__list",collapsed:p},t.map(((e,t)=>a.createElement(Te,(0,s.Z)({mobile:!0,isDropdownItem:!0,onClick:o,activeClassName:"menu__link--active"},e,{key:t}))))))}function pe(e){let{mobile:t=!1,...n}=e;const r=t?de:ue;return a.createElement(r,n)}var fe=n(94711);function me(e){let{width:t=20,height:n=20,...r}=e;return a.createElement("svg",(0,s.Z)({viewBox:"0 0 24 24",width:t,height:n,"aria-hidden":!0},r),a.createElement("path",{fill:"currentColor",d:"M12.87 15.07l-2.54-2.51.03-.03c1.74-1.94 2.98-4.17 3.71-6.53H17V4h-7V2H8v2H1v1.99h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04zM18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12zm-2.62 7l1.62-4.33L19.12 17h-3.24z"}))}const he="iconLanguage_nlXk";var be=n(94184),ge=n.n(be),ye=n(28084);const ve=e=>{const t=(0,a.useRef)(!1),r=(0,a.useRef)(null),[i,o]=(0,a.useState)(!1),s=(0,l.k6)(),{siteConfig:c={}}=(0,le.Z)(),u=(0,B.Z)(),{baseUrl:d}=c,p=(0,ye.eZ)("docusaurus-lunr-search"),f=()=>{t.current||(Promise.all([fetch(`${d}${p.fileNames.searchDoc}`).then((e=>e.json())),fetch(`${d}${p.fileNames.lunrIndex}`).then((e=>e.json())),Promise.all([n.e(4611),n.e(5684)]).then(n.bind(n,4734)),Promise.all([n.e(532),n.e(2572)]).then(n.bind(n,32572))]).then((e=>{let[t,n,{default:a}]=e;0!==t.length&&(((e,t,n)=>{new n({searchDocs:e,searchIndex:t,baseUrl:d,inputSelector:"#search_input_react",handleSelected:(e,t,n)=>{const a=n.url||"/";document.createElement("a").href=a,s.push(a)}})})(t,n,a),o(!0))})),t.current=!0)},m=(0,a.useCallback)((t=>{r.current.contains(t.target)||r.current.focus(),e.handleSearchBarToggle&&e.handleSearchBarToggle(!e.isSearchBarExpanded)}),[e.isSearchBarExpanded]);return u&&f(),a.createElement("div",{className:"navbar__search",key:"search-box"},a.createElement("span",{"aria-label":"expand searchbar",role:"button",className:ge()("search-icon",{"search-icon-hidden":e.isSearchBarExpanded}),onClick:m,onKeyDown:m,tabIndex:0}),a.createElement("input",{id:"search_input_react",type:"search",placeholder:i?"Search":"Loading...","aria-label":"Search",className:ge()("navbar__search-input",{"search-bar-expanded":e.isSearchBarExpanded},{"search-bar":!e.isSearchBarExpanded}),onClick:f,onMouseOver:f,onFocus:m,onBlur:m,ref:r,disabled:!i}))},we={searchBox:"searchBox_ZlJk"};function Se(e){let{children:t,className:n}=e;return a.createElement("div",{className:(0,r.Z)(n,we.searchBox)},t)}var xe=n(94104),_e=n(53438);var Ee=n(60373);const ke=e=>e.docs.find((t=>t.id===e.mainDocId));const Ce={default:ie,localeDropdown:function(e){let{mobile:t,dropdownItemsBefore:n,dropdownItemsAfter:r,...i}=e;const{i18n:{currentLocale:o,locales:u,localeConfigs:d}}=(0,le.Z)(),p=(0,fe.l)(),{search:f,hash:m}=(0,l.TH)(),h=[...n,...u.map((e=>{const n=`${`pathname://${p.createUrl({locale:e,fullyQualified:!1})}`}${f}${m}`;return{label:d[e].label,lang:d[e].htmlLang,to:n,target:"_self",autoAddBaseUrl:!1,className:e===o?t?"menu__link--active":"dropdown__link--active":""}})),...r],b=t?(0,c.I)({message:"Languages",id:"theme.navbar.mobileLanguageDropdown.label",description:"The label for the mobile language switcher dropdown"}):d[o].label;return a.createElement(pe,(0,s.Z)({},i,{mobile:t,label:a.createElement(a.Fragment,null,a.createElement(me,{className:he}),b),items:h}))},search:function(e){let{mobile:t,className:n}=e;return t?null:a.createElement(Se,{className:n},a.createElement(ve,null))},dropdown:pe,html:function(e){let{value:t,className:n,mobile:i=!1,isDropdownItem:o=!1}=e;const s=o?"li":"div";return a.createElement(s,{className:(0,r.Z)({navbar__item:!i&&!o,"menu__list-item":i},n),dangerouslySetInnerHTML:{__html:t}})},doc:function(e){let{docId:t,label:n,docsPluginId:r,...i}=e;const{activeDoc:o}=(0,xe.Iw)(r),l=(0,_e.vY)(t,r);return null===l?null:a.createElement(ie,(0,s.Z)({exact:!0},i,{isActive:()=>o?.path===l.path||!!o?.sidebar&&o.sidebar===l.sidebar,label:n??l.id,to:l.path}))},docSidebar:function(e){let{sidebarId:t,label:n,docsPluginId:r,...i}=e;const{activeDoc:o}=(0,xe.Iw)(r),l=(0,_e.oz)(t,r).link;if(!l)throw new Error(`DocSidebarNavbarItem: Sidebar with ID "${t}" doesn't have anything to be linked to.`);return a.createElement(ie,(0,s.Z)({exact:!0},i,{isActive:()=>o?.sidebar===t,label:n??l.label,to:l.path}))},docsVersion:function(e){let{label:t,to:n,docsPluginId:r,...i}=e;const o=(0,_e.lO)(r)[0],l=t??o.label,c=n??(e=>e.docs.find((t=>t.id===e.mainDocId)))(o).path;return a.createElement(ie,(0,s.Z)({},i,{label:l,to:c}))},docsVersionDropdown:function(e){let{mobile:t,docsPluginId:n,dropdownActiveClassDisabled:r,dropdownItemsBefore:i,dropdownItemsAfter:o,...u}=e;const{search:d,hash:p}=(0,l.TH)(),f=(0,xe.Iw)(n),m=(0,xe.gB)(n),{savePreferredVersionName:h}=(0,Ee.J)(n),b=[...i,...m.map((e=>{const t=f.alternateDocVersions[e.name]??ke(e);return{label:e.label,to:`${t.path}${d}${p}`,isActive:()=>e===f.activeVersion,onClick:()=>h(e.name)}})),...o],g=(0,_e.lO)(n)[0],y=t&&b.length>1?(0,c.I)({id:"theme.navbar.mobileVersionsDropdown.label",message:"Versions",description:"The label for the navbar versions dropdown on mobile view"}):g.label,v=t&&b.length>1?void 0:ke(g).path;return b.length<=1?a.createElement(ie,(0,s.Z)({},u,{mobile:t,label:y,to:v,isActive:r?()=>!1:void 0})):a.createElement(pe,(0,s.Z)({},u,{mobile:t,label:y,to:v,items:b,isActive:r?()=>!1:void 0}))}};function Te(e){let{type:t,...n}=e;const r=function(e,t){return e&&"default"!==e?e:"items"in t?"dropdown":"default"}(t,n),i=Ce[r];if(!i)throw new Error(`No NavbarItem component found for type "${t}".`);return a.createElement(i,n)}function Pe(){const e=(0,A.e)(),t=(0,w.L)().navbar.items;return a.createElement("ul",{className:"menu__list"},t.map(((t,n)=>a.createElement(Te,(0,s.Z)({mobile:!0},t,{onClick:()=>e.toggle(),key:n})))))}function Ae(e){return a.createElement("button",(0,s.Z)({},e,{type:"button",className:"clean-btn navbar-sidebar__back"}),a.createElement(c.Z,{id:"theme.navbar.mobileSidebarSecondaryMenu.backButtonLabel",description:"The label of the back button to return to main menu, inside the mobile navbar sidebar secondary menu (notably used to display the docs sidebar)"},"\u2190 Back to main menu"))}function Ne(){const e=0===(0,w.L)().navbar.items.length,t=M();return a.createElement(a.Fragment,null,!e&&a.createElement(Ae,{onClick:()=>t.hide()}),t.content)}function Le(){const e=(0,A.e)();var t;return void 0===(t=e.shown)&&(t=!0),(0,a.useEffect)((()=>(document.body.style.overflow=t?"hidden":"visible",()=>{document.body.style.overflow="visible"})),[t]),e.shouldRender?a.createElement(z,{header:a.createElement(K,null),primaryMenu:a.createElement(Pe,null),secondaryMenu:a.createElement(Ne,null)}):null}const Oe={navbarHideable:"navbarHideable_m1mJ",navbarHidden:"navbarHidden_jGov"};function Ie(e){return a.createElement("div",(0,s.Z)({role:"presentation"},e,{className:(0,r.Z)("navbar-sidebar__backdrop",e.className)}))}function Re(e){let{children:t}=e;const{navbar:{hideOnScroll:n,style:i}}=(0,w.L)(),o=(0,A.e)(),{navbarRef:s,isNavbarVisible:l}=function(e){const[t,n]=(0,a.useState)(e),r=(0,a.useRef)(!1),i=(0,a.useRef)(0),o=(0,a.useCallback)((e=>{null!==e&&(i.current=e.getBoundingClientRect().height)}),[]);return(0,N.RF)(((t,a)=>{let{scrollY:o}=t;if(!e)return;if(o=s?n(!1):o+c{if(!e)return;const a=t.location.hash;if(a?document.getElementById(a.substring(1)):void 0)return r.current=!0,void n(!1);n(!0)})),{navbarRef:o,isNavbarVisible:t}}(n);return a.createElement("nav",{ref:s,"aria-label":(0,c.I)({id:"theme.NavBar.navAriaLabel",message:"Main",description:"The ARIA label for the main navigation"}),className:(0,r.Z)("navbar","navbar--fixed-top",n&&[Oe.navbarHideable,!l&&Oe.navbarHidden],{"navbar--dark":"dark"===i,"navbar--primary":"primary"===i,"navbar-sidebar--show":o.shown})},t,a.createElement(Ie,{onClick:o.toggle}),a.createElement(Le,null))}var De=n(18780);const Me={errorBoundaryError:"errorBoundaryError_a6uf"};function ze(e){return a.createElement("button",(0,s.Z)({type:"button"},e),a.createElement(c.Z,{id:"theme.ErrorPageContent.tryAgain",description:"The label of the button to try again rendering when the React error boundary captures an error"},"Try again"))}function Fe(e){let{error:t}=e;const n=(0,De.getErrorCausalChain)(t).map((e=>e.message)).join("\n\nCause:\n");return a.createElement("p",{className:Me.errorBoundaryError},n)}class Be extends a.Component{componentDidCatch(e,t){throw this.props.onError(e,t)}render(){return this.props.children}}const je="right";function $e(e){let{width:t=30,height:n=30,className:r,...i}=e;return a.createElement("svg",(0,s.Z)({className:r,width:t,height:n,viewBox:"0 0 30 30","aria-hidden":"true"},i),a.createElement("path",{stroke:"currentColor",strokeLinecap:"round",strokeMiterlimit:"10",strokeWidth:"2",d:"M4 7h22M4 15h22M4 23h22"}))}function Ue(){const{toggle:e,shown:t}=(0,A.e)();return a.createElement("button",{onClick:e,"aria-label":(0,c.I)({id:"theme.docs.sidebar.toggleSidebarButtonAriaLabel",message:"Toggle navigation bar",description:"The ARIA label for hamburger menu button of mobile navigation"}),"aria-expanded":t,className:"navbar__toggle clean-btn",type:"button"},a.createElement($e,null))}const Ze={colorModeToggle:"colorModeToggle_DEke"};function He(e){let{items:t}=e;return a.createElement(a.Fragment,null,t.map(((e,t)=>a.createElement(Be,{key:t,onError:t=>new Error(`A theme navbar item failed to render.\nPlease double-check the following navbar item (themeConfig.navbar.items) of your Docusaurus config:\n${JSON.stringify(e,null,2)}`,{cause:t})},a.createElement(Te,e)))))}function Ge(e){let{left:t,right:n}=e;return a.createElement("div",{className:"navbar__inner"},a.createElement("div",{className:"navbar__items"},t),a.createElement("div",{className:"navbar__items navbar__items--right"},n))}function qe(){const e=(0,A.e)(),t=(0,w.L)().navbar.items,[n,r]=function(e){function t(e){return"left"===(e.position??je)}return[e.filter(t),e.filter((e=>!t(e)))]}(t),i=t.find((e=>"search"===e.type));return a.createElement(Ge,{left:a.createElement(a.Fragment,null,!e.disabled&&a.createElement(Ue,null),a.createElement(W,null),a.createElement(He,{items:n})),right:a.createElement(a.Fragment,null,a.createElement(He,{items:r}),a.createElement(q,{className:Ze.colorModeToggle}),!i&&a.createElement(Se,null,a.createElement(ve,null)))})}function Ve(){return a.createElement(Re,null,a.createElement(qe,null))}function We(e){let{item:t}=e;const{to:n,href:r,label:i,prependBaseUrlToHref:o,...l}=t,c=(0,Q.Z)(n),u=(0,Q.Z)(r,{forcePrependBaseUrl:!0});return a.createElement(X.Z,(0,s.Z)({className:"footer__link-item"},r?{href:o?u:r}:{to:c},l),i,r&&!(0,J.Z)(r)&&a.createElement(te.Z,null))}function Ye(e){let{item:t}=e;return t.html?a.createElement("li",{className:"footer__item",dangerouslySetInnerHTML:{__html:t.html}}):a.createElement("li",{key:t.href??t.to,className:"footer__item"},a.createElement(We,{item:t}))}function Ke(e){let{column:t}=e;return a.createElement("div",{className:"col footer__col"},a.createElement("div",{className:"footer__title"},t.title),a.createElement("ul",{className:"footer__items clean-list"},t.items.map(((e,t)=>a.createElement(Ye,{key:t,item:e})))))}function Xe(e){let{columns:t}=e;return a.createElement("div",{className:"row footer__links"},t.map(((e,t)=>a.createElement(Ke,{key:t,column:e}))))}function Qe(){return a.createElement("span",{className:"footer__link-separator"},"\xb7")}function Je(e){let{item:t}=e;return t.html?a.createElement("span",{className:"footer__link-item",dangerouslySetInnerHTML:{__html:t.html}}):a.createElement(We,{item:t})}function et(e){let{links:t}=e;return a.createElement("div",{className:"footer__links text--center"},a.createElement("div",{className:"footer__links"},t.map(((e,n)=>a.createElement(a.Fragment,{key:n},a.createElement(Je,{item:e}),t.length!==n+1&&a.createElement(Qe,null))))))}function tt(e){let{links:t}=e;return function(e){return"title"in e[0]}(t)?a.createElement(Xe,{columns:t}):a.createElement(et,{links:t})}var nt=n(50941);const at={footerLogoLink:"footerLogoLink_BH7S"};function rt(e){let{logo:t}=e;const{withBaseUrl:n}=(0,Q.C)(),i={light:n(t.src),dark:n(t.srcDark??t.src)};return a.createElement(nt.Z,{className:(0,r.Z)("footer__logo",t.className),alt:t.alt,sources:i,width:t.width,height:t.height,style:t.style})}function it(e){let{logo:t}=e;return t.href?a.createElement(X.Z,{href:t.href,className:at.footerLogoLink,target:t.target},a.createElement(rt,{logo:t})):a.createElement(rt,{logo:t})}function ot(e){let{copyright:t}=e;return a.createElement("div",{className:"footer__copyright",dangerouslySetInnerHTML:{__html:t}})}function st(e){let{style:t,links:n,logo:i,copyright:o}=e;return a.createElement("footer",{className:(0,r.Z)("footer",{"footer--dark":"dark"===t})},a.createElement("div",{className:"container container-fluid"},n,(i||o)&&a.createElement("div",{className:"footer__bottom text--center"},i&&a.createElement("div",{className:"margin-bottom--sm"},i),o)))}function lt(){const{footer:e}=(0,w.L)();if(!e)return null;const{copyright:t,links:n,logo:r,style:i}=e;return a.createElement(st,{style:i,links:n&&n.length>0&&a.createElement(tt,{links:n}),logo:r&&a.createElement(it,{logo:r}),copyright:t&&a.createElement(ot,{copyright:t})})}const ct=a.memo(lt),ut=(0,L.Qc)([F.S,S.pl,N.OC,Ee.L5,o.VC,function(e){let{children:t}=e;return a.createElement(O.n2,null,a.createElement(A.M,null,a.createElement(R,null,t)))}]);function dt(e){let{children:t}=e;return a.createElement(ut,null,t)}function pt(e){let{error:t,tryAgain:n}=e;return a.createElement("main",{className:"container margin-vert--xl"},a.createElement("div",{className:"row"},a.createElement("div",{className:"col col--6 col--offset-3"},a.createElement("h1",{className:"hero__title"},a.createElement(c.Z,{id:"theme.ErrorPageContent.title",description:"The title of the fallback page when the page crashed"},"This page crashed.")),a.createElement("div",{className:"margin-vert--lg"},a.createElement(ze,{onClick:n,className:"button button--primary shadow--lw"})),a.createElement("hr",null),a.createElement("div",{className:"margin-vert--md"},a.createElement(Fe,{error:t})))))}const ft={mainWrapper:"mainWrapper_z2l0"};function mt(e){const{children:t,noFooter:n,wrapperClassName:s,title:l,description:c}=e;return(0,g.t)(),a.createElement(dt,null,a.createElement(o.d,{title:l,description:c}),a.createElement(v,null),a.createElement(P,null),a.createElement(Ve,null),a.createElement("div",{id:d,className:(0,r.Z)(b.k.wrapper.main,ft.mainWrapper,s)},a.createElement(i.Z,{fallback:e=>a.createElement(pt,e)},t)),!n&&a.createElement(ct,null))}},21327:(e,t,n)=>{"use strict";n.d(t,{Z:()=>d});var a=n(87462),r=n(67294),i=n(39960),o=n(44996),s=n(52263),l=n(86668),c=n(50941);function u(e){let{logo:t,alt:n,imageClassName:a}=e;const i={light:(0,o.Z)(t.src),dark:(0,o.Z)(t.srcDark||t.src)},s=r.createElement(c.Z,{className:t.className,sources:i,height:t.height,width:t.width,alt:n,style:t.style});return a?r.createElement("div",{className:a},s):s}function d(e){const{siteConfig:{title:t}}=(0,s.Z)(),{navbar:{title:n,logo:c}}=(0,l.L)(),{imageClassName:d,titleClassName:p,...f}=e,m=(0,o.Z)(c?.href||"/"),h=n?"":t,b=c?.alt??h;return r.createElement(i.Z,(0,a.Z)({to:m},f,c?.target&&{target:c.target}),c&&r.createElement(u,{logo:c,alt:b,imageClassName:d}),null!=n&&r.createElement("b",{className:p},n))}},90197:(e,t,n)=>{"use strict";n.d(t,{Z:()=>i});var a=n(67294),r=n(35742);function i(e){let{locale:t,version:n,tag:i}=e;const o=t;return a.createElement(r.Z,null,t&&a.createElement("meta",{name:"docusaurus_locale",content:t}),n&&a.createElement("meta",{name:"docusaurus_version",content:n}),i&&a.createElement("meta",{name:"docusaurus_tag",content:i}),o&&a.createElement("meta",{name:"docsearch:language",content:o}),n&&a.createElement("meta",{name:"docsearch:version",content:n}),i&&a.createElement("meta",{name:"docsearch:docusaurus_tag",content:i}))}},50941:(e,t,n)=>{"use strict";n.d(t,{Z:()=>c});var a=n(87462),r=n(67294),i=n(86010),o=n(72389),s=n(92949);const l={themedImage:"themedImage_ToTc","themedImage--light":"themedImage--light_HNdA","themedImage--dark":"themedImage--dark_i4oU"};function c(e){const t=(0,o.Z)(),{colorMode:n}=(0,s.I)(),{sources:c,className:u,alt:d,...p}=e,f=t?"dark"===n?["dark"]:["light"]:["light","dark"];return r.createElement(r.Fragment,null,f.map((e=>r.createElement("img",(0,a.Z)({key:e,src:c[e],alt:d,className:(0,i.Z)(l.themedImage,l[`themedImage--${e}`],u)},p)))))}},86043:(e,t,n)=>{"use strict";n.d(t,{u:()=>l,z:()=>b});var a=n(87462),r=n(67294),i=n(10412),o=n(91442);const s="ease-in-out";function l(e){let{initialState:t}=e;const[n,a]=(0,r.useState)(t??!1),i=(0,r.useCallback)((()=>{a((e=>!e))}),[]);return{collapsed:n,setCollapsed:a,toggleCollapsed:i}}const c={display:"none",overflow:"hidden",height:"0px"},u={display:"block",overflow:"visible",height:"auto"};function d(e,t){const n=t?c:u;e.style.display=n.display,e.style.overflow=n.overflow,e.style.height=n.height}function p(e){let{collapsibleRef:t,collapsed:n,animation:a}=e;const i=(0,r.useRef)(!1);(0,r.useEffect)((()=>{const e=t.current;function r(){const t=e.scrollHeight,n=a?.duration??function(e){if((0,o.n)())return 1;const t=e/36;return Math.round(10*(4+15*t**.25+t/5))}(t);return{transition:`height ${n}ms ${a?.easing??s}`,height:`${t}px`}}function l(){const t=r();e.style.transition=t.transition,e.style.height=t.height}if(!i.current)return d(e,n),void(i.current=!0);return e.style.willChange="height",function(){const t=requestAnimationFrame((()=>{n?(l(),requestAnimationFrame((()=>{e.style.height=c.height,e.style.overflow=c.overflow}))):(e.style.display="block",requestAnimationFrame((()=>{l()})))}));return()=>cancelAnimationFrame(t)}()}),[t,n,a])}function f(e){if(!i.Z.canUseDOM)return e?c:u}function m(e){let{as:t="div",collapsed:n,children:a,animation:i,onCollapseTransitionEnd:o,className:s,disableSSRStyle:l}=e;const c=(0,r.useRef)(null);return p({collapsibleRef:c,collapsed:n,animation:i}),r.createElement(t,{ref:c,style:l?void 0:f(n),onTransitionEnd:e=>{"height"===e.propertyName&&(d(c.current,n),o?.(n))},className:s},a)}function h(e){let{collapsed:t,...n}=e;const[i,o]=(0,r.useState)(!t),[s,l]=(0,r.useState)(t);return(0,r.useLayoutEffect)((()=>{t||o(!0)}),[t]),(0,r.useLayoutEffect)((()=>{i&&l(t)}),[i,t]),i?r.createElement(m,(0,a.Z)({},n,{collapsed:s})):null}function b(e){let{lazy:t,...n}=e;const a=t?h:m;return r.createElement(a,n)}},59689:(e,t,n)=>{"use strict";n.d(t,{nT:()=>m,pl:()=>f});var a=n(67294),r=n(72389),i=n(50012),o=n(902),s=n(86668);const l=(0,i.WA)("docusaurus.announcement.dismiss"),c=(0,i.WA)("docusaurus.announcement.id"),u=()=>"true"===l.get(),d=e=>l.set(String(e)),p=a.createContext(null);function f(e){let{children:t}=e;const n=function(){const{announcementBar:e}=(0,s.L)(),t=(0,r.Z)(),[n,i]=(0,a.useState)((()=>!!t&&u()));(0,a.useEffect)((()=>{i(u())}),[]);const o=(0,a.useCallback)((()=>{d(!0),i(!0)}),[]);return(0,a.useEffect)((()=>{if(!e)return;const{id:t}=e;let n=c.get();"annoucement-bar"===n&&(n="announcement-bar");const a=t!==n;c.set(t),a&&d(!1),!a&&u()||i(!1)}),[e]),(0,a.useMemo)((()=>({isActive:!!e&&!n,close:o})),[e,n,o])}();return a.createElement(p.Provider,{value:n},t)}function m(){const e=(0,a.useContext)(p);if(!e)throw new o.i6("AnnouncementBarProvider");return e}},92949:(e,t,n)=>{"use strict";n.d(t,{I:()=>b,S:()=>h});var a=n(67294),r=n(10412),i=n(902),o=n(50012),s=n(86668);const l=a.createContext(void 0),c="theme",u=(0,o.WA)(c),d={light:"light",dark:"dark"},p=e=>e===d.dark?d.dark:d.light,f=e=>r.Z.canUseDOM?p(document.documentElement.getAttribute("data-theme")):p(e),m=e=>{u.set(p(e))};function h(e){let{children:t}=e;const n=function(){const{colorMode:{defaultMode:e,disableSwitch:t,respectPrefersColorScheme:n}}=(0,s.L)(),[r,i]=(0,a.useState)(f(e));(0,a.useEffect)((()=>{t&&u.del()}),[t]);const o=(0,a.useCallback)((function(t,a){void 0===a&&(a={});const{persist:r=!0}=a;t?(i(t),r&&m(t)):(i(n?window.matchMedia("(prefers-color-scheme: dark)").matches?d.dark:d.light:e),u.del())}),[n,e]);(0,a.useEffect)((()=>{document.documentElement.setAttribute("data-theme",p(r))}),[r]),(0,a.useEffect)((()=>{if(t)return;const e=e=>{if(e.key!==c)return;const t=u.get();null!==t&&o(p(t))};return window.addEventListener("storage",e),()=>window.removeEventListener("storage",e)}),[t,o]);const l=(0,a.useRef)(!1);return(0,a.useEffect)((()=>{if(t&&!n)return;const e=window.matchMedia("(prefers-color-scheme: dark)"),a=()=>{window.matchMedia("print").matches||l.current?l.current=window.matchMedia("print").matches:o(null)};return e.addListener(a),()=>e.removeListener(a)}),[o,t,n]),(0,a.useMemo)((()=>({colorMode:r,setColorMode:o,get isDarkTheme(){return r===d.dark},setLightTheme(){o(d.light)},setDarkTheme(){o(d.dark)}})),[r,o])}();return a.createElement(l.Provider,{value:n},t)}function b(){const e=(0,a.useContext)(l);if(null==e)throw new i.i6("ColorModeProvider","Please see https://docusaurus.io/docs/api/themes/configuration#use-color-mode.");return e}},60373:(e,t,n)=>{"use strict";n.d(t,{J:()=>y,L5:()=>b});var a=n(67294),r=n(94104),i=n(29935),o=n(86668),s=n(53438),l=n(902),c=n(50012);const u=e=>`docs-preferred-version-${e}`,d={save:(e,t,n)=>{(0,c.WA)(u(e),{persistence:t}).set(n)},read:(e,t)=>(0,c.WA)(u(e),{persistence:t}).get(),clear:(e,t)=>{(0,c.WA)(u(e),{persistence:t}).del()}},p=e=>Object.fromEntries(e.map((e=>[e,{preferredVersionName:null}])));const f=a.createContext(null);function m(){const e=(0,r._r)(),t=(0,o.L)().docs.versionPersistence,n=(0,a.useMemo)((()=>Object.keys(e)),[e]),[i,s]=(0,a.useState)((()=>p(n)));(0,a.useEffect)((()=>{s(function(e){let{pluginIds:t,versionPersistence:n,allDocsData:a}=e;function r(e){const t=d.read(e,n);return a[e].versions.some((e=>e.name===t))?{preferredVersionName:t}:(d.clear(e,n),{preferredVersionName:null})}return Object.fromEntries(t.map((e=>[e,r(e)])))}({allDocsData:e,versionPersistence:t,pluginIds:n}))}),[e,t,n]);return[i,(0,a.useMemo)((()=>({savePreferredVersion:function(e,n){d.save(e,t,n),s((t=>({...t,[e]:{preferredVersionName:n}})))}})),[t])]}function h(e){let{children:t}=e;const n=m();return a.createElement(f.Provider,{value:n},t)}function b(e){let{children:t}=e;return s.cE?a.createElement(h,null,t):a.createElement(a.Fragment,null,t)}function g(){const e=(0,a.useContext)(f);if(!e)throw new l.i6("DocsPreferredVersionContextProvider");return e}function y(e){void 0===e&&(e=i.m);const t=(0,r.zh)(e),[n,o]=g(),{preferredVersionName:s}=n[e];return{preferredVersion:t.versions.find((e=>e.name===s))??null,savePreferredVersionName:(0,a.useCallback)((t=>{o.savePreferredVersion(e,t)}),[o,e])}}},1116:(e,t,n)=>{"use strict";n.d(t,{V:()=>l,b:()=>s});var a=n(67294),r=n(902);const i=Symbol("EmptyContext"),o=a.createContext(i);function s(e){let{children:t,name:n,items:r}=e;const i=(0,a.useMemo)((()=>n&&r?{name:n,items:r}:null),[n,r]);return a.createElement(o.Provider,{value:i},t)}function l(){const e=(0,a.useContext)(o);if(e===i)throw new r.i6("DocsSidebarProvider");return e}},74477:(e,t,n)=>{"use strict";n.d(t,{E:()=>s,q:()=>o});var a=n(67294),r=n(902);const i=a.createContext(null);function o(e){let{children:t,version:n}=e;return a.createElement(i.Provider,{value:n},t)}function s(){const e=(0,a.useContext)(i);if(null===e)throw new r.i6("DocsVersionProvider");return e}},93163:(e,t,n)=>{"use strict";n.d(t,{M:()=>d,e:()=>p});var a=n(67294),r=n(13102),i=n(87524),o=n(91980),s=n(86668),l=n(902);const c=a.createContext(void 0);function u(){const e=function(){const e=(0,r.HY)(),{items:t}=(0,s.L)().navbar;return 0===t.length&&!e.component}(),t=(0,i.i)(),n=!e&&"mobile"===t,[l,c]=(0,a.useState)(!1);(0,o.Rb)((()=>{if(l)return c(!1),!1}));const u=(0,a.useCallback)((()=>{c((e=>!e))}),[]);return(0,a.useEffect)((()=>{"desktop"===t&&c(!1)}),[t]),(0,a.useMemo)((()=>({disabled:e,shouldRender:n,toggle:u,shown:l})),[e,n,u,l])}function d(e){let{children:t}=e;const n=u();return a.createElement(c.Provider,{value:n},t)}function p(){const e=a.useContext(c);if(void 0===e)throw new l.i6("NavbarMobileSidebarProvider");return e}},13102:(e,t,n)=>{"use strict";n.d(t,{HY:()=>s,Zo:()=>l,n2:()=>o});var a=n(67294),r=n(902);const i=a.createContext(null);function o(e){let{children:t}=e;const n=(0,a.useState)({component:null,props:null});return a.createElement(i.Provider,{value:n},t)}function s(){const e=(0,a.useContext)(i);if(!e)throw new r.i6("NavbarSecondaryMenuContentProvider");return e[0]}function l(e){let{component:t,props:n}=e;const o=(0,a.useContext)(i);if(!o)throw new r.i6("NavbarSecondaryMenuContentProvider");const[,s]=o,l=(0,r.Ql)(n);return(0,a.useEffect)((()=>{s({component:t,props:l})}),[s,t,l]),(0,a.useEffect)((()=>()=>s({component:null,props:null})),[s]),null}},19727:(e,t,n)=>{"use strict";n.d(t,{h:()=>r,t:()=>i});var a=n(67294);const r="navigation-with-keyboard";function i(){(0,a.useEffect)((()=>{function e(e){"keydown"===e.type&&"Tab"===e.key&&document.body.classList.add(r),"mousedown"===e.type&&document.body.classList.remove(r)}return document.addEventListener("keydown",e),document.addEventListener("mousedown",e),()=>{document.body.classList.remove(r),document.removeEventListener("keydown",e),document.removeEventListener("mousedown",e)}}),[])}},87524:(e,t,n)=>{"use strict";n.d(t,{i:()=>c});var a=n(67294),r=n(10412);const i={desktop:"desktop",mobile:"mobile",ssr:"ssr"},o=996;function s(){return r.Z.canUseDOM?window.innerWidth>o?i.desktop:i.mobile:i.ssr}const l=!1;function c(){const[e,t]=(0,a.useState)((()=>l?"ssr":s()));return(0,a.useEffect)((()=>{function e(){t(s())}const n=l?window.setTimeout(e,1e3):void 0;return window.addEventListener("resize",e),()=>{window.removeEventListener("resize",e),clearTimeout(n)}}),[]),e}},35281:(e,t,n)=>{"use strict";n.d(t,{k:()=>a});const a={page:{blogListPage:"blog-list-page",blogPostPage:"blog-post-page",blogTagsListPage:"blog-tags-list-page",blogTagPostListPage:"blog-tags-post-list-page",docsDocPage:"docs-doc-page",docsTagsListPage:"docs-tags-list-page",docsTagDocListPage:"docs-tags-doc-list-page",mdxPage:"mdx-page"},wrapper:{main:"main-wrapper",blogPages:"blog-wrapper",docsPages:"docs-wrapper",mdxPages:"mdx-wrapper"},common:{editThisPage:"theme-edit-this-page",lastUpdated:"theme-last-updated",backToTopButton:"theme-back-to-top-button",codeBlock:"theme-code-block",admonition:"theme-admonition",admonitionType:e=>`theme-admonition-${e}`},layout:{},docs:{docVersionBanner:"theme-doc-version-banner",docVersionBadge:"theme-doc-version-badge",docBreadcrumbs:"theme-doc-breadcrumbs",docMarkdown:"theme-doc-markdown",docTocMobile:"theme-doc-toc-mobile",docTocDesktop:"theme-doc-toc-desktop",docFooter:"theme-doc-footer",docFooterTagsRow:"theme-doc-footer-tags-row",docFooterEditMetaRow:"theme-doc-footer-edit-meta-row",docSidebarContainer:"theme-doc-sidebar-container",docSidebarMenu:"theme-doc-sidebar-menu",docSidebarItemCategory:"theme-doc-sidebar-item-category",docSidebarItemLink:"theme-doc-sidebar-item-link",docSidebarItemCategoryLevel:e=>`theme-doc-sidebar-item-category-level-${e}`,docSidebarItemLinkLevel:e=>`theme-doc-sidebar-item-link-level-${e}`},blog:{}}},91442:(e,t,n)=>{"use strict";function a(){return window.matchMedia("(prefers-reduced-motion: reduce)").matches}n.d(t,{n:()=>a})},53438:(e,t,n)=>{"use strict";n.d(t,{MN:()=>k,Wl:()=>m,_F:()=>y,cE:()=>p,hI:()=>E,jA:()=>h,lO:()=>S,oz:()=>x,s1:()=>w,vY:()=>_,xz:()=>f});var a=n(67294),r=n(16550),i=n(18790),o=n(94104),s=n(60373),l=n(74477),c=n(1116),u=n(67392),d=n(48596);const p=!!o._r;function f(e){const t=(0,l.E)();if(!e)return;const n=t.docs[e];if(!n)throw new Error(`no version doc found by id=${e}`);return n}function m(e){if(e.href)return e.href;for(const t of e.items){if("link"===t.type)return t.href;if("category"===t.type){const e=m(t);if(e)return e}}}function h(){const{pathname:e}=(0,r.TH)(),t=(0,c.V)();if(!t)throw new Error("Unexpected: cant find current sidebar in context");const n=v({sidebarItems:t.items,pathname:e,onlyCategories:!0}).slice(-1)[0];if(!n)throw new Error(`${e} is not associated with a category. useCurrentSidebarCategory() should only be used on category index pages.`);return n}const b=(e,t)=>void 0!==e&&(0,d.Mg)(e,t),g=(e,t)=>e.some((e=>y(e,t)));function y(e,t){return"link"===e.type?b(e.href,t):"category"===e.type&&(b(e.href,t)||g(e.items,t))}function v(e){let{sidebarItems:t,pathname:n,onlyCategories:a=!1}=e;const r=[];return function e(t){for(const i of t)if("category"===i.type&&((0,d.Mg)(i.href,n)||e(i.items))||"link"===i.type&&(0,d.Mg)(i.href,n)){return a&&"category"!==i.type||r.unshift(i),!0}return!1}(t),r}function w(){const e=(0,c.V)(),{pathname:t}=(0,r.TH)(),n=(0,o.gA)()?.pluginData.breadcrumbs;return!1!==n&&e?v({sidebarItems:e.items,pathname:t}):null}function S(e){const{activeVersion:t}=(0,o.Iw)(e),{preferredVersion:n}=(0,s.J)(e),r=(0,o.yW)(e);return(0,a.useMemo)((()=>(0,u.j)([t,n,r].filter(Boolean))),[t,n,r])}function x(e,t){const n=S(t);return(0,a.useMemo)((()=>{const t=n.flatMap((e=>e.sidebars?Object.entries(e.sidebars):[])),a=t.find((t=>t[0]===e));if(!a)throw new Error(`Can't find any sidebar with id "${e}" in version${n.length>1?"s":""} ${n.map((e=>e.name)).join(", ")}".\nAvailable sidebar ids are:\n- ${t.map((e=>e[0])).join("\n- ")}`);return a[1]}),[e,n])}function _(e,t){const n=S(t);return(0,a.useMemo)((()=>{const t=n.flatMap((e=>e.docs)),a=t.find((t=>t.id===e));if(!a){if(n.flatMap((e=>e.draftIds)).includes(e))return null;throw new Error(`Couldn't find any doc with id "${e}" in version${n.length>1?"s":""} "${n.map((e=>e.name)).join(", ")}".\nAvailable doc ids are:\n- ${(0,u.j)(t.map((e=>e.id))).join("\n- ")}`)}return a}),[e,n])}function E(e){let{route:t,versionMetadata:n}=e;const a=(0,r.TH)(),o=t.routes,s=o.find((e=>(0,r.LX)(a.pathname,e)));if(!s)return null;const l=s.sidebar,c=l?n.docsSidebars[l]:void 0;return{docElement:(0,i.H)(o),sidebarName:l,sidebarItems:c}}function k(e){return e.filter((e=>"category"!==e.type||!!m(e)))}},91980:(e,t,n)=>{"use strict";n.d(t,{Rb:()=>s,_X:()=>l});var a=n(67294),r=n(16550),i=n(61688),o=n(902);function s(e){!function(e){const t=(0,r.k6)(),n=(0,o.zX)(e);(0,a.useEffect)((()=>t.block(((e,t)=>n(e,t)))),[t,n])}(((t,n)=>{if("POP"===n)return e(t,n)}))}function l(e){return function(e){const t=(0,r.k6)();return(0,i.useSyncExternalStore)(t.listen,(()=>e(t)),(()=>e(t)))}((t=>null===e?null:new URLSearchParams(t.location.search).get(e)))}},67392:(e,t,n)=>{"use strict";function a(e,t){return void 0===t&&(t=(e,t)=>e===t),e.filter(((n,a)=>e.findIndex((e=>t(e,n)))!==a))}function r(e){return Array.from(new Set(e))}n.d(t,{j:()=>r,l:()=>a})},1944:(e,t,n)=>{"use strict";n.d(t,{FG:()=>p,d:()=>u,VC:()=>f});var a=n(67294),r=n(86010),i=n(35742),o=n(30226);function s(){const e=a.useContext(o._);if(!e)throw new Error("Unexpected: no Docusaurus route context found");return e}var l=n(44996),c=n(52263);function u(e){let{title:t,description:n,keywords:r,image:o,children:s}=e;const u=function(e){const{siteConfig:t}=(0,c.Z)(),{title:n,titleDelimiter:a}=t;return e?.trim().length?`${e.trim()} ${a} ${n}`:n}(t),{withBaseUrl:d}=(0,l.C)(),p=o?d(o,{absolute:!0}):void 0;return a.createElement(i.Z,null,t&&a.createElement("title",null,u),t&&a.createElement("meta",{property:"og:title",content:u}),n&&a.createElement("meta",{name:"description",content:n}),n&&a.createElement("meta",{property:"og:description",content:n}),r&&a.createElement("meta",{name:"keywords",content:Array.isArray(r)?r.join(","):r}),p&&a.createElement("meta",{property:"og:image",content:p}),p&&a.createElement("meta",{name:"twitter:image",content:p}),s)}const d=a.createContext(void 0);function p(e){let{className:t,children:n}=e;const o=a.useContext(d),s=(0,r.Z)(o,t);return a.createElement(d.Provider,{value:s},a.createElement(i.Z,null,a.createElement("html",{className:s})),n)}function f(e){let{children:t}=e;const n=s(),i=`plugin-${n.plugin.name.replace(/docusaurus-(?:plugin|theme)-(?:content-)?/gi,"")}`;const o=`plugin-id-${n.plugin.id}`;return a.createElement(p,{className:(0,r.Z)(i,o)},t)}},902:(e,t,n)=>{"use strict";n.d(t,{D9:()=>o,Qc:()=>c,Ql:()=>l,i6:()=>s,zX:()=>i});var a=n(67294);const r=n(10412).Z.canUseDOM?a.useLayoutEffect:a.useEffect;function i(e){const t=(0,a.useRef)(e);return r((()=>{t.current=e}),[e]),(0,a.useCallback)((function(){return t.current(...arguments)}),[])}function o(e){const t=(0,a.useRef)();return r((()=>{t.current=e})),t.current}class s extends Error{constructor(e,t){super(),this.name="ReactContextError",this.message=`Hook ${this.stack?.split("\n")[1]?.match(/at (?:\w+\.)?(?\w+)/)?.groups.name??""} is called outside the <${e}>. ${t??""}`}}function l(e){const t=Object.entries(e);return t.sort(((e,t)=>e[0].localeCompare(t[0]))),(0,a.useMemo)((()=>e),t.flat())}function c(e){return t=>{let{children:n}=t;return a.createElement(a.Fragment,null,e.reduceRight(((e,t)=>a.createElement(t,null,e)),n))}}},48596:(e,t,n)=>{"use strict";n.d(t,{Mg:()=>o,Ns:()=>s});var a=n(67294),r=n(723),i=n(52263);function o(e,t){const n=e=>(!e||e.endsWith("/")?e:`${e}/`)?.toLowerCase();return n(e)===n(t)}function s(){const{baseUrl:e}=(0,i.Z)().siteConfig;return(0,a.useMemo)((()=>function(e){let{baseUrl:t,routes:n}=e;function a(e){return e.path===t&&!0===e.exact}function r(e){return e.path===t&&!e.exact}return function e(t){if(0===t.length)return;return t.find(a)||e(t.filter(r).flatMap((e=>e.routes??[])))}(n)}({routes:r.Z,baseUrl:e})),[e])}},12466:(e,t,n)=>{"use strict";n.d(t,{Ct:()=>f,OC:()=>l,RF:()=>d,o5:()=>p});var a=n(67294),r=n(10412),i=n(72389),o=n(902);const s=a.createContext(void 0);function l(e){let{children:t}=e;const n=function(){const e=(0,a.useRef)(!0);return(0,a.useMemo)((()=>({scrollEventsEnabledRef:e,enableScrollEvents:()=>{e.current=!0},disableScrollEvents:()=>{e.current=!1}})),[])}();return a.createElement(s.Provider,{value:n},t)}function c(){const e=(0,a.useContext)(s);if(null==e)throw new o.i6("ScrollControllerProvider");return e}const u=()=>r.Z.canUseDOM?{scrollX:window.pageXOffset,scrollY:window.pageYOffset}:null;function d(e,t){void 0===t&&(t=[]);const{scrollEventsEnabledRef:n}=c(),r=(0,a.useRef)(u()),i=(0,o.zX)(e);(0,a.useEffect)((()=>{const e=()=>{if(!n.current)return;const e=u();i(e,r.current),r.current=e},t={passive:!0};return e(),window.addEventListener("scroll",e,t),()=>window.removeEventListener("scroll",e,t)}),[i,n,...t])}function p(){const e=c(),t=function(){const e=(0,a.useRef)({elem:null,top:0}),t=(0,a.useCallback)((t=>{e.current={elem:t,top:t.getBoundingClientRect().top}}),[]),n=(0,a.useCallback)((()=>{const{current:{elem:t,top:n}}=e;if(!t)return{restored:!1};const a=t.getBoundingClientRect().top-n;return a&&window.scrollBy({left:0,top:a}),e.current={elem:null,top:0},{restored:0!==a}}),[]);return(0,a.useMemo)((()=>({save:t,restore:n})),[n,t])}(),n=(0,a.useRef)(void 0),r=(0,a.useCallback)((a=>{t.save(a),e.disableScrollEvents(),n.current=()=>{const{restored:a}=t.restore();if(n.current=void 0,a){const t=()=>{e.enableScrollEvents(),window.removeEventListener("scroll",t)};window.addEventListener("scroll",t)}else e.enableScrollEvents()}}),[e,t]);return(0,a.useLayoutEffect)((()=>{queueMicrotask((()=>n.current?.()))})),{blockElementScrollPositionUntilNextRender:r}}function f(){const e=(0,a.useRef)(null),t=(0,i.Z)()&&"smooth"===getComputedStyle(document.documentElement).scrollBehavior;return{startScroll:n=>{e.current=t?function(e){return window.scrollTo({top:e,behavior:"smooth"}),()=>{}}(n):function(e){let t=null;const n=document.documentElement.scrollTop>e;return function a(){const r=document.documentElement.scrollTop;(n&&r>e||!n&&rt&&cancelAnimationFrame(t)}(n)},cancelScroll:()=>e.current?.()}}},43320:(e,t,n)=>{"use strict";n.d(t,{HX:()=>a,os:()=>r});n(52263);const a="default";function r(e,t){return`docs-${e}-${t}`}},50012:(e,t,n)=>{"use strict";n.d(t,{Nk:()=>d,WA:()=>u});var a=n(67294),r=n(61688);const i="localStorage";function o(e){let{key:t,oldValue:n,newValue:a,storage:r}=e;if(n===a)return;const i=document.createEvent("StorageEvent");i.initStorageEvent("storage",!1,!1,t,n,a,window.location.href,r),window.dispatchEvent(i)}function s(e){if(void 0===e&&(e=i),"undefined"==typeof window)throw new Error("Browser storage is not available on Node.js/Docusaurus SSR process.");if("none"===e)return null;try{return window[e]}catch(n){return t=n,l||(console.warn("Docusaurus browser storage is not available.\nPossible reasons: running Docusaurus in an iframe, in an incognito browser session, or using too strict browser privacy settings.",t),l=!0),null}var t}let l=!1;const c={get:()=>null,set:()=>{},del:()=>{},listen:()=>()=>{}};function u(e,t){if("undefined"==typeof window)return function(e){function t(){throw new Error(`Illegal storage API usage for storage key "${e}".\nDocusaurus storage APIs are not supposed to be called on the server-rendering process.\nPlease only call storage APIs in effects and event handlers.`)}return{get:t,set:t,del:t,listen:t}}(e);const n=s(t?.persistence);return null===n?c:{get:()=>{try{return n.getItem(e)}catch(t){return console.error(`Docusaurus storage error, can't get key=${e}`,t),null}},set:t=>{try{const a=n.getItem(e);n.setItem(e,t),o({key:e,oldValue:a,newValue:t,storage:n})}catch(a){console.error(`Docusaurus storage error, can't set ${e}=${t}`,a)}},del:()=>{try{const t=n.getItem(e);n.removeItem(e),o({key:e,oldValue:t,newValue:null,storage:n})}catch(t){console.error(`Docusaurus storage error, can't delete key=${e}`,t)}},listen:t=>{try{const a=a=>{a.storageArea===n&&a.key===e&&t(a)};return window.addEventListener("storage",a),()=>window.removeEventListener("storage",a)}catch(a){return console.error(`Docusaurus storage error, can't listen for changes of key=${e}`,a),()=>{}}}}}function d(e,t){const n=(0,a.useRef)((()=>null===e?c:u(e,t))).current(),i=(0,a.useCallback)((e=>"undefined"==typeof window?()=>{}:n.listen(e)),[n]);return[(0,r.useSyncExternalStore)(i,(()=>"undefined"==typeof window?null:n.get()),(()=>null)),n]}},94711:(e,t,n)=>{"use strict";n.d(t,{l:()=>i});var a=n(52263),r=n(16550);function i(){const{siteConfig:{baseUrl:e,url:t},i18n:{defaultLocale:n,currentLocale:i}}=(0,a.Z)(),{pathname:o}=(0,r.TH)(),s=i===n?e:e.replace(`/${i}/`,"/"),l=o.replace(e,"");return{createUrl:function(e){let{locale:a,fullyQualified:r}=e;return`${r?t:""}${function(e){return e===n?`${s}`:`${s}${e}/`}(a)}${l}`}}}},85936:(e,t,n)=>{"use strict";n.d(t,{S:()=>o});var a=n(67294),r=n(16550),i=n(902);function o(e){const t=(0,r.TH)(),n=(0,i.D9)(t),o=(0,i.zX)(e);(0,a.useEffect)((()=>{n&&t!==n&&o({location:t,previousLocation:n})}),[o,t,n])}},86668:(e,t,n)=>{"use strict";n.d(t,{L:()=>r});var a=n(52263);function r(){return(0,a.Z)().siteConfig.themeConfig}},8802:(e,t)=>{"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.default=function(e,t){const{trailingSlash:n,baseUrl:a}=t;if(e.startsWith("#"))return e;if(void 0===n)return e;const[r]=e.split(/[#?]/),i="/"===r||r===a?r:(o=r,n?function(e){return e.endsWith("/")?e:`${e}/`}(o):function(e){return e.endsWith("/")?e.slice(0,-1):e}(o));var o;return e.replace(r,i)}},54143:(e,t)=>{"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.getErrorCausalChain=void 0,t.getErrorCausalChain=function e(t){return t.cause?[t,...e(t.cause)]:[t]}},18780:function(e,t,n){"use strict";var a=this&&this.__importDefault||function(e){return e&&e.__esModule?e:{default:e}};Object.defineProperty(t,"__esModule",{value:!0}),t.getErrorCausalChain=t.applyTrailingSlash=t.blogPostContainerID=void 0,t.blogPostContainerID="__blog-post-container";var r=n(8802);Object.defineProperty(t,"applyTrailingSlash",{enumerable:!0,get:function(){return a(r).default}});var i=n(54143);Object.defineProperty(t,"getErrorCausalChain",{enumerable:!0,get:function(){return i.getErrorCausalChain}})},94184:(e,t)=>{var n;!function(){"use strict";var a={}.hasOwnProperty;function r(){for(var e=[],t=0;t{"use strict";function a(e){var t,n,r="";if("string"==typeof e||"number"==typeof e)r+=e;else if("object"==typeof e)if(Array.isArray(e))for(t=0;tr});const r=function(){for(var e,t,n=0,r="";n{"use strict";n.d(t,{lX:()=>w,q_:()=>C,ob:()=>f,PP:()=>P,Ep:()=>p});var a=n(87462);function r(e){return"/"===e.charAt(0)}function i(e,t){for(var n=t,a=n+1,r=e.length;a=0;p--){var f=o[p];"."===f?i(o,p):".."===f?(i(o,p),d++):d&&(i(o,p),d--)}if(!c)for(;d--;d)o.unshift("..");!c||""===o[0]||o[0]&&r(o[0])||o.unshift("");var m=o.join("/");return n&&"/"!==m.substr(-1)&&(m+="/"),m};var s=n(38776);function l(e){return"/"===e.charAt(0)?e:"/"+e}function c(e){return"/"===e.charAt(0)?e.substr(1):e}function u(e,t){return function(e,t){return 0===e.toLowerCase().indexOf(t.toLowerCase())&&-1!=="/?#".indexOf(e.charAt(t.length))}(e,t)?e.substr(t.length):e}function d(e){return"/"===e.charAt(e.length-1)?e.slice(0,-1):e}function p(e){var t=e.pathname,n=e.search,a=e.hash,r=t||"/";return n&&"?"!==n&&(r+="?"===n.charAt(0)?n:"?"+n),a&&"#"!==a&&(r+="#"===a.charAt(0)?a:"#"+a),r}function f(e,t,n,r){var i;"string"==typeof e?(i=function(e){var t=e||"/",n="",a="",r=t.indexOf("#");-1!==r&&(a=t.substr(r),t=t.substr(0,r));var i=t.indexOf("?");return-1!==i&&(n=t.substr(i),t=t.substr(0,i)),{pathname:t,search:"?"===n?"":n,hash:"#"===a?"":a}}(e),i.state=t):(void 0===(i=(0,a.Z)({},e)).pathname&&(i.pathname=""),i.search?"?"!==i.search.charAt(0)&&(i.search="?"+i.search):i.search="",i.hash?"#"!==i.hash.charAt(0)&&(i.hash="#"+i.hash):i.hash="",void 0!==t&&void 0===i.state&&(i.state=t));try{i.pathname=decodeURI(i.pathname)}catch(s){throw s instanceof URIError?new URIError('Pathname "'+i.pathname+'" could not be decoded. This is likely caused by an invalid percent-encoding.'):s}return n&&(i.key=n),r?i.pathname?"/"!==i.pathname.charAt(0)&&(i.pathname=o(i.pathname,r.pathname)):i.pathname=r.pathname:i.pathname||(i.pathname="/"),i}function m(){var e=null;var t=[];return{setPrompt:function(t){return e=t,function(){e===t&&(e=null)}},confirmTransitionTo:function(t,n,a,r){if(null!=e){var i="function"==typeof e?e(t,n):e;"string"==typeof i?"function"==typeof a?a(i,r):r(!0):r(!1!==i)}else r(!0)},appendListener:function(e){var n=!0;function a(){n&&e.apply(void 0,arguments)}return t.push(a),function(){n=!1,t=t.filter((function(e){return e!==a}))}},notifyListeners:function(){for(var e=arguments.length,n=new Array(e),a=0;at?n.splice(t,n.length-t,r):n.push(r),d({action:a,location:r,index:t,entries:n})}}))},replace:function(e,t){var a="REPLACE",r=f(e,t,h(),w.location);u.confirmTransitionTo(r,a,n,(function(e){e&&(w.entries[w.index]=r,d({action:a,location:r}))}))},go:v,goBack:function(){v(-1)},goForward:function(){v(1)},canGo:function(e){var t=w.index+e;return t>=0&&t{"use strict";var a=n(59864),r={childContextTypes:!0,contextType:!0,contextTypes:!0,defaultProps:!0,displayName:!0,getDefaultProps:!0,getDerivedStateFromError:!0,getDerivedStateFromProps:!0,mixins:!0,propTypes:!0,type:!0},i={name:!0,length:!0,prototype:!0,caller:!0,callee:!0,arguments:!0,arity:!0},o={$$typeof:!0,compare:!0,defaultProps:!0,displayName:!0,propTypes:!0,type:!0},s={};function l(e){return a.isMemo(e)?o:s[e.$$typeof]||r}s[a.ForwardRef]={$$typeof:!0,render:!0,defaultProps:!0,displayName:!0,propTypes:!0},s[a.Memo]=o;var c=Object.defineProperty,u=Object.getOwnPropertyNames,d=Object.getOwnPropertySymbols,p=Object.getOwnPropertyDescriptor,f=Object.getPrototypeOf,m=Object.prototype;e.exports=function e(t,n,a){if("string"!=typeof n){if(m){var r=f(n);r&&r!==m&&e(t,r,a)}var o=u(n);d&&(o=o.concat(d(n)));for(var s=l(t),h=l(n),b=0;b{"use strict";e.exports=function(e,t,n,a,r,i,o,s){if(!e){var l;if(void 0===t)l=new Error("Minified exception occurred; use the non-minified dev environment for the full error message and additional helpful warnings.");else{var c=[n,a,r,i,o,s],u=0;(l=new Error(t.replace(/%s/g,(function(){return c[u++]})))).name="Invariant Violation"}throw l.framesToPop=1,l}}},5826:e=>{e.exports=Array.isArray||function(e){return"[object Array]"==Object.prototype.toString.call(e)}},32497:(e,t,n)=>{"use strict";n.r(t)},52295:(e,t,n)=>{"use strict";n.r(t)},74865:function(e,t,n){var a,r;a=function(){var e,t,n={version:"0.2.0"},a=n.settings={minimum:.08,easing:"ease",positionUsing:"",speed:200,trickle:!0,trickleRate:.02,trickleSpeed:800,showSpinner:!0,barSelector:'[role="bar"]',spinnerSelector:'[role="spinner"]',parent:"body",template:'
'};function r(e,t,n){return en?n:e}function i(e){return 100*(-1+e)}function o(e,t,n){var r;return(r="translate3d"===a.positionUsing?{transform:"translate3d("+i(e)+"%,0,0)"}:"translate"===a.positionUsing?{transform:"translate("+i(e)+"%,0)"}:{"margin-left":i(e)+"%"}).transition="all "+t+"ms "+n,r}n.configure=function(e){var t,n;for(t in e)void 0!==(n=e[t])&&e.hasOwnProperty(t)&&(a[t]=n);return this},n.status=null,n.set=function(e){var t=n.isStarted();e=r(e,a.minimum,1),n.status=1===e?null:e;var i=n.render(!t),c=i.querySelector(a.barSelector),u=a.speed,d=a.easing;return i.offsetWidth,s((function(t){""===a.positionUsing&&(a.positionUsing=n.getPositioningCSS()),l(c,o(e,u,d)),1===e?(l(i,{transition:"none",opacity:1}),i.offsetWidth,setTimeout((function(){l(i,{transition:"all "+u+"ms linear",opacity:0}),setTimeout((function(){n.remove(),t()}),u)}),u)):setTimeout(t,u)})),this},n.isStarted=function(){return"number"==typeof n.status},n.start=function(){n.status||n.set(0);var e=function(){setTimeout((function(){n.status&&(n.trickle(),e())}),a.trickleSpeed)};return a.trickle&&e(),this},n.done=function(e){return e||n.status?n.inc(.3+.5*Math.random()).set(1):this},n.inc=function(e){var t=n.status;return t?("number"!=typeof e&&(e=(1-t)*r(Math.random()*t,.1,.95)),t=r(t+e,0,.994),n.set(t)):n.start()},n.trickle=function(){return n.inc(Math.random()*a.trickleRate)},e=0,t=0,n.promise=function(a){return a&&"resolved"!==a.state()?(0===t&&n.start(),e++,t++,a.always((function(){0==--t?(e=0,n.done()):n.set((e-t)/e)})),this):this},n.render=function(e){if(n.isRendered())return document.getElementById("nprogress");u(document.documentElement,"nprogress-busy");var t=document.createElement("div");t.id="nprogress",t.innerHTML=a.template;var r,o=t.querySelector(a.barSelector),s=e?"-100":i(n.status||0),c=document.querySelector(a.parent);return l(o,{transition:"all 0 linear",transform:"translate3d("+s+"%,0,0)"}),a.showSpinner||(r=t.querySelector(a.spinnerSelector))&&f(r),c!=document.body&&u(c,"nprogress-custom-parent"),c.appendChild(t),t},n.remove=function(){d(document.documentElement,"nprogress-busy"),d(document.querySelector(a.parent),"nprogress-custom-parent");var e=document.getElementById("nprogress");e&&f(e)},n.isRendered=function(){return!!document.getElementById("nprogress")},n.getPositioningCSS=function(){var e=document.body.style,t="WebkitTransform"in e?"Webkit":"MozTransform"in e?"Moz":"msTransform"in e?"ms":"OTransform"in e?"O":"";return t+"Perspective"in e?"translate3d":t+"Transform"in e?"translate":"margin"};var s=function(){var e=[];function t(){var n=e.shift();n&&n(t)}return function(n){e.push(n),1==e.length&&t()}}(),l=function(){var e=["Webkit","O","Moz","ms"],t={};function n(e){return e.replace(/^-ms-/,"ms-").replace(/-([\da-z])/gi,(function(e,t){return t.toUpperCase()}))}function a(t){var n=document.body.style;if(t in n)return t;for(var a,r=e.length,i=t.charAt(0).toUpperCase()+t.slice(1);r--;)if((a=e[r]+i)in n)return a;return t}function r(e){return e=n(e),t[e]||(t[e]=a(e))}function i(e,t,n){t=r(t),e.style[t]=n}return function(e,t){var n,a,r=arguments;if(2==r.length)for(n in t)void 0!==(a=t[n])&&t.hasOwnProperty(n)&&i(e,n,a);else i(e,r[1],r[2])}}();function c(e,t){return("string"==typeof e?e:p(e)).indexOf(" "+t+" ")>=0}function u(e,t){var n=p(e),a=n+t;c(n,t)||(e.className=a.substring(1))}function d(e,t){var n,a=p(e);c(e,t)&&(n=a.replace(" "+t+" "," "),e.className=n.substring(1,n.length-1))}function p(e){return(" "+(e.className||"")+" ").replace(/\s+/gi," ")}function f(e){e&&e.parentNode&&e.parentNode.removeChild(e)}return n},void 0===(r="function"==typeof a?a.call(t,n,t,e):a)||(e.exports=r)},27418:e=>{"use strict";var t=Object.getOwnPropertySymbols,n=Object.prototype.hasOwnProperty,a=Object.prototype.propertyIsEnumerable;e.exports=function(){try{if(!Object.assign)return!1;var e=new String("abc");if(e[5]="de","5"===Object.getOwnPropertyNames(e)[0])return!1;for(var t={},n=0;n<10;n++)t["_"+String.fromCharCode(n)]=n;if("0123456789"!==Object.getOwnPropertyNames(t).map((function(e){return t[e]})).join(""))return!1;var a={};return"abcdefghijklmnopqrst".split("").forEach((function(e){a[e]=e})),"abcdefghijklmnopqrst"===Object.keys(Object.assign({},a)).join("")}catch(r){return!1}}()?Object.assign:function(e,r){for(var i,o,s=function(e){if(null==e)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(e)}(e),l=1;l{"use strict";n.d(t,{Z:()=>i});var a=function(){var e=/(?:^|\s)lang(?:uage)?-([\w-]+)(?=\s|$)/i,t=0,n={},a={util:{encode:function e(t){return t instanceof r?new r(t.type,e(t.content),t.alias):Array.isArray(t)?t.map(e):t.replace(/&/g,"&").replace(/=d.reach);_+=x.value.length,x=x.next){var E=x.value;if(t.length>e.length)return;if(!(E instanceof r)){var k,C=1;if(y){if(!(k=i(S,_,e,g))||k.index>=e.length)break;var T=k.index,P=k.index+k[0].length,A=_;for(A+=x.value.length;T>=A;)A+=(x=x.next).value.length;if(_=A-=x.value.length,x.value instanceof r)continue;for(var N=x;N!==t.tail&&(Ad.reach&&(d.reach=R);var D=x.prev;if(O&&(D=l(t,D,O),_+=O.length),c(t,D,C),x=l(t,D,new r(p,b?a.tokenize(L,b):L,v,L)),I&&l(t,x,I),C>1){var M={cause:p+","+m,reach:R};o(e,t,n,x.prev,_,M),d&&M.reach>d.reach&&(d.reach=M.reach)}}}}}}function s(){var e={value:null,prev:null,next:null},t={value:null,prev:e,next:null};e.next=t,this.head=e,this.tail=t,this.length=0}function l(e,t,n){var a=t.next,r={value:n,prev:t,next:a};return t.next=r,a.prev=r,e.length++,r}function c(e,t,n){for(var a=t.next,r=0;r"+i.content+""},a}(),r=a;a.default=a,r.languages.markup={comment:{pattern://,greedy:!0},prolog:{pattern:/<\?[\s\S]+?\?>/,greedy:!0},doctype:{pattern:/"'[\]]|"[^"]*"|'[^']*')+(?:\[(?:[^<"'\]]|"[^"]*"|'[^']*'|<(?!!--)|)*\]\s*)?>/i,greedy:!0,inside:{"internal-subset":{pattern:/(^[^\[]*\[)[\s\S]+(?=\]>$)/,lookbehind:!0,greedy:!0,inside:null},string:{pattern:/"[^"]*"|'[^']*'/,greedy:!0},punctuation:/^$|[[\]]/,"doctype-tag":/^DOCTYPE/i,name:/[^\s<>'"]+/}},cdata:{pattern://i,greedy:!0},tag:{pattern:/<\/?(?!\d)[^\s>\/=$<%]+(?:\s(?:\s*[^\s>\/=]+(?:\s*=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+(?=[\s>]))|(?=[\s/>])))+)?\s*\/?>/,greedy:!0,inside:{tag:{pattern:/^<\/?[^\s>\/]+/,inside:{punctuation:/^<\/?/,namespace:/^[^\s>\/:]+:/}},"special-attr":[],"attr-value":{pattern:/=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+)/,inside:{punctuation:[{pattern:/^=/,alias:"attr-equals"},/"|'/]}},punctuation:/\/?>/,"attr-name":{pattern:/[^\s>\/]+/,inside:{namespace:/^[^\s>\/:]+:/}}}},entity:[{pattern:/&[\da-z]{1,8};/i,alias:"named-entity"},/&#x?[\da-f]{1,8};/i]},r.languages.markup.tag.inside["attr-value"].inside.entity=r.languages.markup.entity,r.languages.markup.doctype.inside["internal-subset"].inside=r.languages.markup,r.hooks.add("wrap",(function(e){"entity"===e.type&&(e.attributes.title=e.content.replace(/&/,"&"))})),Object.defineProperty(r.languages.markup.tag,"addInlined",{value:function(e,t){var n={};n["language-"+t]={pattern:/(^$)/i,lookbehind:!0,inside:r.languages[t]},n.cdata=/^$/i;var a={"included-cdata":{pattern://i,inside:n}};a["language-"+t]={pattern:/[\s\S]+/,inside:r.languages[t]};var i={};i[e]={pattern:RegExp(/(<__[^>]*>)(?:))*\]\]>|(?!)/.source.replace(/__/g,(function(){return e})),"i"),lookbehind:!0,greedy:!0,inside:a},r.languages.insertBefore("markup","cdata",i)}}),Object.defineProperty(r.languages.markup.tag,"addAttribute",{value:function(e,t){r.languages.markup.tag.inside["special-attr"].push({pattern:RegExp(/(^|["'\s])/.source+"(?:"+e+")"+/\s*=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+(?=[\s>]))/.source,"i"),lookbehind:!0,inside:{"attr-name":/^[^\s=]+/,"attr-value":{pattern:/=[\s\S]+/,inside:{value:{pattern:/(^=\s*(["']|(?!["'])))\S[\s\S]*(?=\2$)/,lookbehind:!0,alias:[t,"language-"+t],inside:r.languages[t]},punctuation:[{pattern:/^=/,alias:"attr-equals"},/"|'/]}}}})}}),r.languages.html=r.languages.markup,r.languages.mathml=r.languages.markup,r.languages.svg=r.languages.markup,r.languages.xml=r.languages.extend("markup",{}),r.languages.ssml=r.languages.xml,r.languages.atom=r.languages.xml,r.languages.rss=r.languages.xml,function(e){var t="\\b(?:BASH|BASHOPTS|BASH_ALIASES|BASH_ARGC|BASH_ARGV|BASH_CMDS|BASH_COMPLETION_COMPAT_DIR|BASH_LINENO|BASH_REMATCH|BASH_SOURCE|BASH_VERSINFO|BASH_VERSION|COLORTERM|COLUMNS|COMP_WORDBREAKS|DBUS_SESSION_BUS_ADDRESS|DEFAULTS_PATH|DESKTOP_SESSION|DIRSTACK|DISPLAY|EUID|GDMSESSION|GDM_LANG|GNOME_KEYRING_CONTROL|GNOME_KEYRING_PID|GPG_AGENT_INFO|GROUPS|HISTCONTROL|HISTFILE|HISTFILESIZE|HISTSIZE|HOME|HOSTNAME|HOSTTYPE|IFS|INSTANCE|JOB|LANG|LANGUAGE|LC_ADDRESS|LC_ALL|LC_IDENTIFICATION|LC_MEASUREMENT|LC_MONETARY|LC_NAME|LC_NUMERIC|LC_PAPER|LC_TELEPHONE|LC_TIME|LESSCLOSE|LESSOPEN|LINES|LOGNAME|LS_COLORS|MACHTYPE|MAILCHECK|MANDATORY_PATH|NO_AT_BRIDGE|OLDPWD|OPTERR|OPTIND|ORBIT_SOCKETDIR|OSTYPE|PAPERSIZE|PATH|PIPESTATUS|PPID|PS1|PS2|PS3|PS4|PWD|RANDOM|REPLY|SECONDS|SELINUX_INIT|SESSION|SESSIONTYPE|SESSION_MANAGER|SHELL|SHELLOPTS|SHLVL|SSH_AUTH_SOCK|TERM|UID|UPSTART_EVENTS|UPSTART_INSTANCE|UPSTART_JOB|UPSTART_SESSION|USER|WINDOWID|XAUTHORITY|XDG_CONFIG_DIRS|XDG_CURRENT_DESKTOP|XDG_DATA_DIRS|XDG_GREETER_DATA_DIR|XDG_MENU_PREFIX|XDG_RUNTIME_DIR|XDG_SEAT|XDG_SEAT_PATH|XDG_SESSION_DESKTOP|XDG_SESSION_ID|XDG_SESSION_PATH|XDG_SESSION_TYPE|XDG_VTNR|XMODIFIERS)\\b",n={pattern:/(^(["']?)\w+\2)[ \t]+\S.*/,lookbehind:!0,alias:"punctuation",inside:null},a={bash:n,environment:{pattern:RegExp("\\$"+t),alias:"constant"},variable:[{pattern:/\$?\(\([\s\S]+?\)\)/,greedy:!0,inside:{variable:[{pattern:/(^\$\(\([\s\S]+)\)\)/,lookbehind:!0},/^\$\(\(/],number:/\b0x[\dA-Fa-f]+\b|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:[Ee]-?\d+)?/,operator:/--|\+\+|\*\*=?|<<=?|>>=?|&&|\|\||[=!+\-*/%<>^&|]=?|[?~:]/,punctuation:/\(\(?|\)\)?|,|;/}},{pattern:/\$\((?:\([^)]+\)|[^()])+\)|`[^`]+`/,greedy:!0,inside:{variable:/^\$\(|^`|\)$|`$/}},{pattern:/\$\{[^}]+\}/,greedy:!0,inside:{operator:/:[-=?+]?|[!\/]|##?|%%?|\^\^?|,,?/,punctuation:/[\[\]]/,environment:{pattern:RegExp("(\\{)"+t),lookbehind:!0,alias:"constant"}}},/\$(?:\w+|[#?*!@$])/],entity:/\\(?:[abceEfnrtv\\"]|O?[0-7]{1,3}|U[0-9a-fA-F]{8}|u[0-9a-fA-F]{4}|x[0-9a-fA-F]{1,2})/};e.languages.bash={shebang:{pattern:/^#!\s*\/.*/,alias:"important"},comment:{pattern:/(^|[^"{\\$])#.*/,lookbehind:!0},"function-name":[{pattern:/(\bfunction\s+)[\w-]+(?=(?:\s*\(?:\s*\))?\s*\{)/,lookbehind:!0,alias:"function"},{pattern:/\b[\w-]+(?=\s*\(\s*\)\s*\{)/,alias:"function"}],"for-or-select":{pattern:/(\b(?:for|select)\s+)\w+(?=\s+in\s)/,alias:"variable",lookbehind:!0},"assign-left":{pattern:/(^|[\s;|&]|[<>]\()\w+(?=\+?=)/,inside:{environment:{pattern:RegExp("(^|[\\s;|&]|[<>]\\()"+t),lookbehind:!0,alias:"constant"}},alias:"variable",lookbehind:!0},string:[{pattern:/((?:^|[^<])<<-?\s*)(\w+)\s[\s\S]*?(?:\r?\n|\r)\2/,lookbehind:!0,greedy:!0,inside:a},{pattern:/((?:^|[^<])<<-?\s*)(["'])(\w+)\2\s[\s\S]*?(?:\r?\n|\r)\3/,lookbehind:!0,greedy:!0,inside:{bash:n}},{pattern:/(^|[^\\](?:\\\\)*)"(?:\\[\s\S]|\$\([^)]+\)|\$(?!\()|`[^`]+`|[^"\\`$])*"/,lookbehind:!0,greedy:!0,inside:a},{pattern:/(^|[^$\\])'[^']*'/,lookbehind:!0,greedy:!0},{pattern:/\$'(?:[^'\\]|\\[\s\S])*'/,greedy:!0,inside:{entity:a.entity}}],environment:{pattern:RegExp("\\$?"+t),alias:"constant"},variable:a.variable,function:{pattern:/(^|[\s;|&]|[<>]\()(?:add|apropos|apt|apt-cache|apt-get|aptitude|aspell|automysqlbackup|awk|basename|bash|bc|bconsole|bg|bzip2|cal|cat|cfdisk|chgrp|chkconfig|chmod|chown|chroot|cksum|clear|cmp|column|comm|composer|cp|cron|crontab|csplit|curl|cut|date|dc|dd|ddrescue|debootstrap|df|diff|diff3|dig|dir|dircolors|dirname|dirs|dmesg|docker|docker-compose|du|egrep|eject|env|ethtool|expand|expect|expr|fdformat|fdisk|fg|fgrep|file|find|fmt|fold|format|free|fsck|ftp|fuser|gawk|git|gparted|grep|groupadd|groupdel|groupmod|groups|grub-mkconfig|gzip|halt|head|hg|history|host|hostname|htop|iconv|id|ifconfig|ifdown|ifup|import|install|ip|jobs|join|kill|killall|less|link|ln|locate|logname|logrotate|look|lpc|lpr|lprint|lprintd|lprintq|lprm|ls|lsof|lynx|make|man|mc|mdadm|mkconfig|mkdir|mke2fs|mkfifo|mkfs|mkisofs|mknod|mkswap|mmv|more|most|mount|mtools|mtr|mutt|mv|nano|nc|netstat|nice|nl|node|nohup|notify-send|npm|nslookup|op|open|parted|passwd|paste|pathchk|ping|pkill|pnpm|podman|podman-compose|popd|pr|printcap|printenv|ps|pushd|pv|quota|quotacheck|quotactl|ram|rar|rcp|reboot|remsync|rename|renice|rev|rm|rmdir|rpm|rsync|scp|screen|sdiff|sed|sendmail|seq|service|sftp|sh|shellcheck|shuf|shutdown|sleep|slocate|sort|split|ssh|stat|strace|su|sudo|sum|suspend|swapon|sync|tac|tail|tar|tee|time|timeout|top|touch|tr|traceroute|tsort|tty|umount|uname|unexpand|uniq|units|unrar|unshar|unzip|update-grub|uptime|useradd|userdel|usermod|users|uudecode|uuencode|v|vcpkg|vdir|vi|vim|virsh|vmstat|wait|watch|wc|wget|whereis|which|who|whoami|write|xargs|xdg-open|yarn|yes|zenity|zip|zsh|zypper)(?=$|[)\s;|&])/,lookbehind:!0},keyword:{pattern:/(^|[\s;|&]|[<>]\()(?:case|do|done|elif|else|esac|fi|for|function|if|in|select|then|until|while)(?=$|[)\s;|&])/,lookbehind:!0},builtin:{pattern:/(^|[\s;|&]|[<>]\()(?:\.|:|alias|bind|break|builtin|caller|cd|command|continue|declare|echo|enable|eval|exec|exit|export|getopts|hash|help|let|local|logout|mapfile|printf|pwd|read|readarray|readonly|return|set|shift|shopt|source|test|times|trap|type|typeset|ulimit|umask|unalias|unset)(?=$|[)\s;|&])/,lookbehind:!0,alias:"class-name"},boolean:{pattern:/(^|[\s;|&]|[<>]\()(?:false|true)(?=$|[)\s;|&])/,lookbehind:!0},"file-descriptor":{pattern:/\B&\d\b/,alias:"important"},operator:{pattern:/\d?<>|>\||\+=|=[=~]?|!=?|<<[<-]?|[&\d]?>>|\d[<>]&?|[<>][&=]?|&[>&]?|\|[&|]?/,inside:{"file-descriptor":{pattern:/^\d/,alias:"important"}}},punctuation:/\$?\(\(?|\)\)?|\.\.|[{}[\];\\]/,number:{pattern:/(^|\s)(?:[1-9]\d*|0)(?:[.,]\d+)?\b/,lookbehind:!0}},n.inside=e.languages.bash;for(var r=["comment","function-name","for-or-select","assign-left","string","environment","function","keyword","builtin","boolean","file-descriptor","operator","punctuation","number"],i=a.variable[1].inside,o=0;o]=?|[!=]=?=?|--?|\+\+?|&&?|\|\|?|[?*/~^%]/,punctuation:/[{}[\];(),.:]/},r.languages.c=r.languages.extend("clike",{comment:{pattern:/\/\/(?:[^\r\n\\]|\\(?:\r\n?|\n|(?![\r\n])))*|\/\*[\s\S]*?(?:\*\/|$)/,greedy:!0},string:{pattern:/"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"/,greedy:!0},"class-name":{pattern:/(\b(?:enum|struct)\s+(?:__attribute__\s*\(\([\s\S]*?\)\)\s*)?)\w+|\b[a-z]\w*_t\b/,lookbehind:!0},keyword:/\b(?:_Alignas|_Alignof|_Atomic|_Bool|_Complex|_Generic|_Imaginary|_Noreturn|_Static_assert|_Thread_local|__attribute__|asm|auto|break|case|char|const|continue|default|do|double|else|enum|extern|float|for|goto|if|inline|int|long|register|return|short|signed|sizeof|static|struct|switch|typedef|typeof|union|unsigned|void|volatile|while)\b/,function:/\b[a-z_]\w*(?=\s*\()/i,number:/(?:\b0x(?:[\da-f]+(?:\.[\da-f]*)?|\.[\da-f]+)(?:p[+-]?\d+)?|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:e[+-]?\d+)?)[ful]{0,4}/i,operator:/>>=?|<<=?|->|([-+&|:])\1|[?:~]|[-+*/%&|^!=<>]=?/}),r.languages.insertBefore("c","string",{char:{pattern:/'(?:\\(?:\r\n|[\s\S])|[^'\\\r\n]){0,32}'/,greedy:!0}}),r.languages.insertBefore("c","string",{macro:{pattern:/(^[\t ]*)#\s*[a-z](?:[^\r\n\\/]|\/(?!\*)|\/\*(?:[^*]|\*(?!\/))*\*\/|\\(?:\r\n|[\s\S]))*/im,lookbehind:!0,greedy:!0,alias:"property",inside:{string:[{pattern:/^(#\s*include\s*)<[^>]+>/,lookbehind:!0},r.languages.c.string],char:r.languages.c.char,comment:r.languages.c.comment,"macro-name":[{pattern:/(^#\s*define\s+)\w+\b(?!\()/i,lookbehind:!0},{pattern:/(^#\s*define\s+)\w+\b(?=\()/i,lookbehind:!0,alias:"function"}],directive:{pattern:/^(#\s*)[a-z]+/,lookbehind:!0,alias:"keyword"},"directive-hash":/^#/,punctuation:/##|\\(?=[\r\n])/,expression:{pattern:/\S[\s\S]*/,inside:r.languages.c}}}}),r.languages.insertBefore("c","function",{constant:/\b(?:EOF|NULL|SEEK_CUR|SEEK_END|SEEK_SET|__DATE__|__FILE__|__LINE__|__TIMESTAMP__|__TIME__|__func__|stderr|stdin|stdout)\b/}),delete r.languages.c.boolean,function(e){var t=/\b(?:alignas|alignof|asm|auto|bool|break|case|catch|char|char16_t|char32_t|char8_t|class|co_await|co_return|co_yield|compl|concept|const|const_cast|consteval|constexpr|constinit|continue|decltype|default|delete|do|double|dynamic_cast|else|enum|explicit|export|extern|final|float|for|friend|goto|if|import|inline|int|int16_t|int32_t|int64_t|int8_t|long|module|mutable|namespace|new|noexcept|nullptr|operator|override|private|protected|public|register|reinterpret_cast|requires|return|short|signed|sizeof|static|static_assert|static_cast|struct|switch|template|this|thread_local|throw|try|typedef|typeid|typename|uint16_t|uint32_t|uint64_t|uint8_t|union|unsigned|using|virtual|void|volatile|wchar_t|while)\b/,n=/\b(?!)\w+(?:\s*\.\s*\w+)*\b/.source.replace(//g,(function(){return t.source}));e.languages.cpp=e.languages.extend("c",{"class-name":[{pattern:RegExp(/(\b(?:class|concept|enum|struct|typename)\s+)(?!)\w+/.source.replace(//g,(function(){return t.source}))),lookbehind:!0},/\b[A-Z]\w*(?=\s*::\s*\w+\s*\()/,/\b[A-Z_]\w*(?=\s*::\s*~\w+\s*\()/i,/\b\w+(?=\s*<(?:[^<>]|<(?:[^<>]|<[^<>]*>)*>)*>\s*::\s*\w+\s*\()/],keyword:t,number:{pattern:/(?:\b0b[01']+|\b0x(?:[\da-f']+(?:\.[\da-f']*)?|\.[\da-f']+)(?:p[+-]?[\d']+)?|(?:\b[\d']+(?:\.[\d']*)?|\B\.[\d']+)(?:e[+-]?[\d']+)?)[ful]{0,4}/i,greedy:!0},operator:/>>=?|<<=?|->|--|\+\+|&&|\|\||[?:~]|<=>|[-+*/%&|^!=<>]=?|\b(?:and|and_eq|bitand|bitor|not|not_eq|or|or_eq|xor|xor_eq)\b/,boolean:/\b(?:false|true)\b/}),e.languages.insertBefore("cpp","string",{module:{pattern:RegExp(/(\b(?:import|module)\s+)/.source+"(?:"+/"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"|<[^<>\r\n]*>/.source+"|"+/(?:\s*:\s*)?|:\s*/.source.replace(//g,(function(){return n}))+")"),lookbehind:!0,greedy:!0,inside:{string:/^[<"][\s\S]+/,operator:/:/,punctuation:/\./}},"raw-string":{pattern:/R"([^()\\ ]{0,16})\([\s\S]*?\)\1"/,alias:"string",greedy:!0}}),e.languages.insertBefore("cpp","keyword",{"generic-function":{pattern:/\b(?!operator\b)[a-z_]\w*\s*<(?:[^<>]|<[^<>]*>)*>(?=\s*\()/i,inside:{function:/^\w+/,generic:{pattern:/<[\s\S]+/,alias:"class-name",inside:e.languages.cpp}}}}),e.languages.insertBefore("cpp","operator",{"double-colon":{pattern:/::/,alias:"punctuation"}}),e.languages.insertBefore("cpp","class-name",{"base-clause":{pattern:/(\b(?:class|struct)\s+\w+\s*:\s*)[^;{}"'\s]+(?:\s+[^;{}"'\s]+)*(?=\s*[;{])/,lookbehind:!0,greedy:!0,inside:e.languages.extend("cpp",{})}}),e.languages.insertBefore("inside","double-colon",{"class-name":/\b[a-z_]\w*\b(?!\s*::)/i},e.languages.cpp["base-clause"])}(r),function(e){var t=/(?:"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"|'(?:\\(?:\r\n|[\s\S])|[^'\\\r\n])*')/;e.languages.css={comment:/\/\*[\s\S]*?\*\//,atrule:{pattern:/@[\w-](?:[^;{\s]|\s+(?![\s{]))*(?:;|(?=\s*\{))/,inside:{rule:/^@[\w-]+/,"selector-function-argument":{pattern:/(\bselector\s*\(\s*(?![\s)]))(?:[^()\s]|\s+(?![\s)])|\((?:[^()]|\([^()]*\))*\))+(?=\s*\))/,lookbehind:!0,alias:"selector"},keyword:{pattern:/(^|[^\w-])(?:and|not|only|or)(?![\w-])/,lookbehind:!0}}},url:{pattern:RegExp("\\burl\\((?:"+t.source+"|"+/(?:[^\\\r\n()"']|\\[\s\S])*/.source+")\\)","i"),greedy:!0,inside:{function:/^url/i,punctuation:/^\(|\)$/,string:{pattern:RegExp("^"+t.source+"$"),alias:"url"}}},selector:{pattern:RegExp("(^|[{}\\s])[^{}\\s](?:[^{};\"'\\s]|\\s+(?![\\s{])|"+t.source+")*(?=\\s*\\{)"),lookbehind:!0},string:{pattern:t,greedy:!0},property:{pattern:/(^|[^-\w\xA0-\uFFFF])(?!\s)[-_a-z\xA0-\uFFFF](?:(?!\s)[-\w\xA0-\uFFFF])*(?=\s*:)/i,lookbehind:!0},important:/!important\b/i,function:{pattern:/(^|[^-a-z0-9])[-a-z0-9]+(?=\()/i,lookbehind:!0},punctuation:/[(){};:,]/},e.languages.css.atrule.inside.rest=e.languages.css;var n=e.languages.markup;n&&(n.tag.addInlined("style","css"),n.tag.addAttribute("style","css"))}(r),function(e){var t,n=/("|')(?:\\(?:\r\n|[\s\S])|(?!\1)[^\\\r\n])*\1/;e.languages.css.selector={pattern:e.languages.css.selector.pattern,lookbehind:!0,inside:t={"pseudo-element":/:(?:after|before|first-letter|first-line|selection)|::[-\w]+/,"pseudo-class":/:[-\w]+/,class:/\.[-\w]+/,id:/#[-\w]+/,attribute:{pattern:RegExp("\\[(?:[^[\\]\"']|"+n.source+")*\\]"),greedy:!0,inside:{punctuation:/^\[|\]$/,"case-sensitivity":{pattern:/(\s)[si]$/i,lookbehind:!0,alias:"keyword"},namespace:{pattern:/^(\s*)(?:(?!\s)[-*\w\xA0-\uFFFF])*\|(?!=)/,lookbehind:!0,inside:{punctuation:/\|$/}},"attr-name":{pattern:/^(\s*)(?:(?!\s)[-\w\xA0-\uFFFF])+/,lookbehind:!0},"attr-value":[n,{pattern:/(=\s*)(?:(?!\s)[-\w\xA0-\uFFFF])+(?=\s*$)/,lookbehind:!0}],operator:/[|~*^$]?=/}},"n-th":[{pattern:/(\(\s*)[+-]?\d*[\dn](?:\s*[+-]\s*\d+)?(?=\s*\))/,lookbehind:!0,inside:{number:/[\dn]+/,operator:/[+-]/}},{pattern:/(\(\s*)(?:even|odd)(?=\s*\))/i,lookbehind:!0}],combinator:/>|\+|~|\|\|/,punctuation:/[(),]/}},e.languages.css.atrule.inside["selector-function-argument"].inside=t,e.languages.insertBefore("css","property",{variable:{pattern:/(^|[^-\w\xA0-\uFFFF])--(?!\s)[-_a-z\xA0-\uFFFF](?:(?!\s)[-\w\xA0-\uFFFF])*/i,lookbehind:!0}});var a={pattern:/(\b\d+)(?:%|[a-z]+(?![\w-]))/,lookbehind:!0},r={pattern:/(^|[^\w.-])-?(?:\d+(?:\.\d+)?|\.\d+)/,lookbehind:!0};e.languages.insertBefore("css","function",{operator:{pattern:/(\s)[+\-*\/](?=\s)/,lookbehind:!0},hexcode:{pattern:/\B#[\da-f]{3,8}\b/i,alias:"color"},color:[{pattern:/(^|[^\w-])(?:AliceBlue|AntiqueWhite|Aqua|Aquamarine|Azure|Beige|Bisque|Black|BlanchedAlmond|Blue|BlueViolet|Brown|BurlyWood|CadetBlue|Chartreuse|Chocolate|Coral|CornflowerBlue|Cornsilk|Crimson|Cyan|DarkBlue|DarkCyan|DarkGoldenRod|DarkGr[ae]y|DarkGreen|DarkKhaki|DarkMagenta|DarkOliveGreen|DarkOrange|DarkOrchid|DarkRed|DarkSalmon|DarkSeaGreen|DarkSlateBlue|DarkSlateGr[ae]y|DarkTurquoise|DarkViolet|DeepPink|DeepSkyBlue|DimGr[ae]y|DodgerBlue|FireBrick|FloralWhite|ForestGreen|Fuchsia|Gainsboro|GhostWhite|Gold|GoldenRod|Gr[ae]y|Green|GreenYellow|HoneyDew|HotPink|IndianRed|Indigo|Ivory|Khaki|Lavender|LavenderBlush|LawnGreen|LemonChiffon|LightBlue|LightCoral|LightCyan|LightGoldenRodYellow|LightGr[ae]y|LightGreen|LightPink|LightSalmon|LightSeaGreen|LightSkyBlue|LightSlateGr[ae]y|LightSteelBlue|LightYellow|Lime|LimeGreen|Linen|Magenta|Maroon|MediumAquaMarine|MediumBlue|MediumOrchid|MediumPurple|MediumSeaGreen|MediumSlateBlue|MediumSpringGreen|MediumTurquoise|MediumVioletRed|MidnightBlue|MintCream|MistyRose|Moccasin|NavajoWhite|Navy|OldLace|Olive|OliveDrab|Orange|OrangeRed|Orchid|PaleGoldenRod|PaleGreen|PaleTurquoise|PaleVioletRed|PapayaWhip|PeachPuff|Peru|Pink|Plum|PowderBlue|Purple|Red|RosyBrown|RoyalBlue|SaddleBrown|Salmon|SandyBrown|SeaGreen|SeaShell|Sienna|Silver|SkyBlue|SlateBlue|SlateGr[ae]y|Snow|SpringGreen|SteelBlue|Tan|Teal|Thistle|Tomato|Transparent|Turquoise|Violet|Wheat|White|WhiteSmoke|Yellow|YellowGreen)(?![\w-])/i,lookbehind:!0},{pattern:/\b(?:hsl|rgb)\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*\)\B|\b(?:hsl|rgb)a\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*,\s*(?:0|0?\.\d+|1)\s*\)\B/i,inside:{unit:a,number:r,function:/[\w-]+(?=\()/,punctuation:/[(),]/}}],entity:/\\[\da-f]{1,8}/i,unit:a,number:r})}(r),r.languages.javascript=r.languages.extend("clike",{"class-name":[r.languages.clike["class-name"],{pattern:/(^|[^$\w\xA0-\uFFFF])(?!\s)[_$A-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\.(?:constructor|prototype))/,lookbehind:!0}],keyword:[{pattern:/((?:^|\})\s*)catch\b/,lookbehind:!0},{pattern:/(^|[^.]|\.\.\.\s*)\b(?:as|assert(?=\s*\{)|async(?=\s*(?:function\b|\(|[$\w\xA0-\uFFFF]|$))|await|break|case|class|const|continue|debugger|default|delete|do|else|enum|export|extends|finally(?=\s*(?:\{|$))|for|from(?=\s*(?:['"]|$))|function|(?:get|set)(?=\s*(?:[#\[$\w\xA0-\uFFFF]|$))|if|implements|import|in|instanceof|interface|let|new|null|of|package|private|protected|public|return|static|super|switch|this|throw|try|typeof|undefined|var|void|while|with|yield)\b/,lookbehind:!0}],function:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*(?:\.\s*(?:apply|bind|call)\s*)?\()/,number:{pattern:RegExp(/(^|[^\w$])/.source+"(?:"+/NaN|Infinity/.source+"|"+/0[bB][01]+(?:_[01]+)*n?/.source+"|"+/0[oO][0-7]+(?:_[0-7]+)*n?/.source+"|"+/0[xX][\dA-Fa-f]+(?:_[\dA-Fa-f]+)*n?/.source+"|"+/\d+(?:_\d+)*n/.source+"|"+/(?:\d+(?:_\d+)*(?:\.(?:\d+(?:_\d+)*)?)?|\.\d+(?:_\d+)*)(?:[Ee][+-]?\d+(?:_\d+)*)?/.source+")"+/(?![\w$])/.source),lookbehind:!0},operator:/--|\+\+|\*\*=?|=>|&&=?|\|\|=?|[!=]==|<<=?|>>>?=?|[-+*/%&|^!=<>]=?|\.{3}|\?\?=?|\?\.?|[~:]/}),r.languages.javascript["class-name"][0].pattern=/(\b(?:class|extends|implements|instanceof|interface|new)\s+)[\w.\\]+/,r.languages.insertBefore("javascript","keyword",{regex:{pattern:/((?:^|[^$\w\xA0-\uFFFF."'\])\s]|\b(?:return|yield))\s*)\/(?:\[(?:[^\]\\\r\n]|\\.)*\]|\\.|[^/\\\[\r\n])+\/[dgimyus]{0,7}(?=(?:\s|\/\*(?:[^*]|\*(?!\/))*\*\/)*(?:$|[\r\n,.;:})\]]|\/\/))/,lookbehind:!0,greedy:!0,inside:{"regex-source":{pattern:/^(\/)[\s\S]+(?=\/[a-z]*$)/,lookbehind:!0,alias:"language-regex",inside:r.languages.regex},"regex-delimiter":/^\/|\/$/,"regex-flags":/^[a-z]+$/}},"function-variable":{pattern:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*[=:]\s*(?:async\s*)?(?:\bfunction\b|(?:\((?:[^()]|\([^()]*\))*\)|(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*)\s*=>))/,alias:"function"},parameter:[{pattern:/(function(?:\s+(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*)?\s*\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\))/,lookbehind:!0,inside:r.languages.javascript},{pattern:/(^|[^$\w\xA0-\uFFFF])(?!\s)[_$a-z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*=>)/i,lookbehind:!0,inside:r.languages.javascript},{pattern:/(\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\)\s*=>)/,lookbehind:!0,inside:r.languages.javascript},{pattern:/((?:\b|\s|^)(?!(?:as|async|await|break|case|catch|class|const|continue|debugger|default|delete|do|else|enum|export|extends|finally|for|from|function|get|if|implements|import|in|instanceof|interface|let|new|null|of|package|private|protected|public|return|set|static|super|switch|this|throw|try|typeof|undefined|var|void|while|with|yield)(?![$\w\xA0-\uFFFF]))(?:(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*\s*)\(\s*|\]\s*\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\)\s*\{)/,lookbehind:!0,inside:r.languages.javascript}],constant:/\b[A-Z](?:[A-Z_]|\dx?)*\b/}),r.languages.insertBefore("javascript","string",{hashbang:{pattern:/^#!.*/,greedy:!0,alias:"comment"},"template-string":{pattern:/`(?:\\[\s\S]|\$\{(?:[^{}]|\{(?:[^{}]|\{[^}]*\})*\})+\}|(?!\$\{)[^\\`])*`/,greedy:!0,inside:{"template-punctuation":{pattern:/^`|`$/,alias:"string"},interpolation:{pattern:/((?:^|[^\\])(?:\\{2})*)\$\{(?:[^{}]|\{(?:[^{}]|\{[^}]*\})*\})+\}/,lookbehind:!0,inside:{"interpolation-punctuation":{pattern:/^\$\{|\}$/,alias:"punctuation"},rest:r.languages.javascript}},string:/[\s\S]+/}},"string-property":{pattern:/((?:^|[,{])[ \t]*)(["'])(?:\\(?:\r\n|[\s\S])|(?!\2)[^\\\r\n])*\2(?=\s*:)/m,lookbehind:!0,greedy:!0,alias:"property"}}),r.languages.insertBefore("javascript","operator",{"literal-property":{pattern:/((?:^|[,{])[ \t]*)(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*:)/m,lookbehind:!0,alias:"property"}}),r.languages.markup&&(r.languages.markup.tag.addInlined("script","javascript"),r.languages.markup.tag.addAttribute(/on(?:abort|blur|change|click|composition(?:end|start|update)|dblclick|error|focus(?:in|out)?|key(?:down|up)|load|mouse(?:down|enter|leave|move|out|over|up)|reset|resize|scroll|select|slotchange|submit|unload|wheel)/.source,"javascript")),r.languages.js=r.languages.javascript,function(e){var t=/#(?!\{).+/,n={pattern:/#\{[^}]+\}/,alias:"variable"};e.languages.coffeescript=e.languages.extend("javascript",{comment:t,string:[{pattern:/'(?:\\[\s\S]|[^\\'])*'/,greedy:!0},{pattern:/"(?:\\[\s\S]|[^\\"])*"/,greedy:!0,inside:{interpolation:n}}],keyword:/\b(?:and|break|by|catch|class|continue|debugger|delete|do|each|else|extend|extends|false|finally|for|if|in|instanceof|is|isnt|let|loop|namespace|new|no|not|null|of|off|on|or|own|return|super|switch|then|this|throw|true|try|typeof|undefined|unless|until|when|while|window|with|yes|yield)\b/,"class-member":{pattern:/@(?!\d)\w+/,alias:"variable"}}),e.languages.insertBefore("coffeescript","comment",{"multiline-comment":{pattern:/###[\s\S]+?###/,alias:"comment"},"block-regex":{pattern:/\/{3}[\s\S]*?\/{3}/,alias:"regex",inside:{comment:t,interpolation:n}}}),e.languages.insertBefore("coffeescript","string",{"inline-javascript":{pattern:/`(?:\\[\s\S]|[^\\`])*`/,inside:{delimiter:{pattern:/^`|`$/,alias:"punctuation"},script:{pattern:/[\s\S]+/,alias:"language-javascript",inside:e.languages.javascript}}},"multiline-string":[{pattern:/'''[\s\S]*?'''/,greedy:!0,alias:"string"},{pattern:/"""[\s\S]*?"""/,greedy:!0,alias:"string",inside:{interpolation:n}}]}),e.languages.insertBefore("coffeescript","keyword",{property:/(?!\d)\w+(?=\s*:(?!:))/}),delete e.languages.coffeescript["template-string"],e.languages.coffee=e.languages.coffeescript}(r),function(e){var t=/[*&][^\s[\]{},]+/,n=/!(?:<[\w\-%#;/?:@&=+$,.!~*'()[\]]+>|(?:[a-zA-Z\d-]*!)?[\w\-%#;/?:@&=+$.~*'()]+)?/,a="(?:"+n.source+"(?:[ \t]+"+t.source+")?|"+t.source+"(?:[ \t]+"+n.source+")?)",r=/(?:[^\s\x00-\x08\x0e-\x1f!"#%&'*,\-:>?@[\]`{|}\x7f-\x84\x86-\x9f\ud800-\udfff\ufffe\uffff]|[?:-])(?:[ \t]*(?:(?![#:])|:))*/.source.replace(//g,(function(){return/[^\s\x00-\x08\x0e-\x1f,[\]{}\x7f-\x84\x86-\x9f\ud800-\udfff\ufffe\uffff]/.source})),i=/"(?:[^"\\\r\n]|\\.)*"|'(?:[^'\\\r\n]|\\.)*'/.source;function o(e,t){t=(t||"").replace(/m/g,"")+"m";var n=/([:\-,[{]\s*(?:\s<>[ \t]+)?)(?:<>)(?=[ \t]*(?:$|,|\]|\}|(?:[\r\n]\s*)?#))/.source.replace(/<>/g,(function(){return a})).replace(/<>/g,(function(){return e}));return RegExp(n,t)}e.languages.yaml={scalar:{pattern:RegExp(/([\-:]\s*(?:\s<>[ \t]+)?[|>])[ \t]*(?:((?:\r?\n|\r)[ \t]+)\S[^\r\n]*(?:\2[^\r\n]+)*)/.source.replace(/<>/g,(function(){return a}))),lookbehind:!0,alias:"string"},comment:/#.*/,key:{pattern:RegExp(/((?:^|[:\-,[{\r\n?])[ \t]*(?:<>[ \t]+)?)<>(?=\s*:\s)/.source.replace(/<>/g,(function(){return a})).replace(/<>/g,(function(){return"(?:"+r+"|"+i+")"}))),lookbehind:!0,greedy:!0,alias:"atrule"},directive:{pattern:/(^[ \t]*)%.+/m,lookbehind:!0,alias:"important"},datetime:{pattern:o(/\d{4}-\d\d?-\d\d?(?:[tT]|[ \t]+)\d\d?:\d{2}:\d{2}(?:\.\d*)?(?:[ \t]*(?:Z|[-+]\d\d?(?::\d{2})?))?|\d{4}-\d{2}-\d{2}|\d\d?:\d{2}(?::\d{2}(?:\.\d*)?)?/.source),lookbehind:!0,alias:"number"},boolean:{pattern:o(/false|true/.source,"i"),lookbehind:!0,alias:"important"},null:{pattern:o(/null|~/.source,"i"),lookbehind:!0,alias:"important"},string:{pattern:o(i),lookbehind:!0,greedy:!0},number:{pattern:o(/[+-]?(?:0x[\da-f]+|0o[0-7]+|(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?|\.inf|\.nan)/.source,"i"),lookbehind:!0},tag:n,important:t,punctuation:/---|[:[\]{}\-,|>?]|\.\.\./},e.languages.yml=e.languages.yaml}(r),function(e){var t=/(?:\\.|[^\\\n\r]|(?:\n|\r\n?)(?![\r\n]))/.source;function n(e){return e=e.replace(//g,(function(){return t})),RegExp(/((?:^|[^\\])(?:\\{2})*)/.source+"(?:"+e+")")}var a=/(?:\\.|``(?:[^`\r\n]|`(?!`))+``|`[^`\r\n]+`|[^\\|\r\n`])+/.source,r=/\|?__(?:\|__)+\|?(?:(?:\n|\r\n?)|(?![\s\S]))/.source.replace(/__/g,(function(){return a})),i=/\|?[ \t]*:?-{3,}:?[ \t]*(?:\|[ \t]*:?-{3,}:?[ \t]*)+\|?(?:\n|\r\n?)/.source;e.languages.markdown=e.languages.extend("markup",{}),e.languages.insertBefore("markdown","prolog",{"front-matter-block":{pattern:/(^(?:\s*[\r\n])?)---(?!.)[\s\S]*?[\r\n]---(?!.)/,lookbehind:!0,greedy:!0,inside:{punctuation:/^---|---$/,"front-matter":{pattern:/\S+(?:\s+\S+)*/,alias:["yaml","language-yaml"],inside:e.languages.yaml}}},blockquote:{pattern:/^>(?:[\t ]*>)*/m,alias:"punctuation"},table:{pattern:RegExp("^"+r+i+"(?:"+r+")*","m"),inside:{"table-data-rows":{pattern:RegExp("^("+r+i+")(?:"+r+")*$"),lookbehind:!0,inside:{"table-data":{pattern:RegExp(a),inside:e.languages.markdown},punctuation:/\|/}},"table-line":{pattern:RegExp("^("+r+")"+i+"$"),lookbehind:!0,inside:{punctuation:/\||:?-{3,}:?/}},"table-header-row":{pattern:RegExp("^"+r+"$"),inside:{"table-header":{pattern:RegExp(a),alias:"important",inside:e.languages.markdown},punctuation:/\|/}}}},code:[{pattern:/((?:^|\n)[ \t]*\n|(?:^|\r\n?)[ \t]*\r\n?)(?: {4}|\t).+(?:(?:\n|\r\n?)(?: {4}|\t).+)*/,lookbehind:!0,alias:"keyword"},{pattern:/^```[\s\S]*?^```$/m,greedy:!0,inside:{"code-block":{pattern:/^(```.*(?:\n|\r\n?))[\s\S]+?(?=(?:\n|\r\n?)^```$)/m,lookbehind:!0},"code-language":{pattern:/^(```).+/,lookbehind:!0},punctuation:/```/}}],title:[{pattern:/\S.*(?:\n|\r\n?)(?:==+|--+)(?=[ \t]*$)/m,alias:"important",inside:{punctuation:/==+$|--+$/}},{pattern:/(^\s*)#.+/m,lookbehind:!0,alias:"important",inside:{punctuation:/^#+|#+$/}}],hr:{pattern:/(^\s*)([*-])(?:[\t ]*\2){2,}(?=\s*$)/m,lookbehind:!0,alias:"punctuation"},list:{pattern:/(^\s*)(?:[*+-]|\d+\.)(?=[\t ].)/m,lookbehind:!0,alias:"punctuation"},"url-reference":{pattern:/!?\[[^\]]+\]:[\t ]+(?:\S+|<(?:\\.|[^>\\])+>)(?:[\t ]+(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\)))?/,inside:{variable:{pattern:/^(!?\[)[^\]]+/,lookbehind:!0},string:/(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\))$/,punctuation:/^[\[\]!:]|[<>]/},alias:"url"},bold:{pattern:n(/\b__(?:(?!_)|_(?:(?!_))+_)+__\b|\*\*(?:(?!\*)|\*(?:(?!\*))+\*)+\*\*/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^..)[\s\S]+(?=..$)/,lookbehind:!0,inside:{}},punctuation:/\*\*|__/}},italic:{pattern:n(/\b_(?:(?!_)|__(?:(?!_))+__)+_\b|\*(?:(?!\*)|\*\*(?:(?!\*))+\*\*)+\*/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^.)[\s\S]+(?=.$)/,lookbehind:!0,inside:{}},punctuation:/[*_]/}},strike:{pattern:n(/(~~?)(?:(?!~))+\2/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^~~?)[\s\S]+(?=\1$)/,lookbehind:!0,inside:{}},punctuation:/~~?/}},"code-snippet":{pattern:/(^|[^\\`])(?:``[^`\r\n]+(?:`[^`\r\n]+)*``(?!`)|`[^`\r\n]+`(?!`))/,lookbehind:!0,greedy:!0,alias:["code","keyword"]},url:{pattern:n(/!?\[(?:(?!\]))+\](?:\([^\s)]+(?:[\t ]+"(?:\\.|[^"\\])*")?\)|[ \t]?\[(?:(?!\]))+\])/.source),lookbehind:!0,greedy:!0,inside:{operator:/^!/,content:{pattern:/(^\[)[^\]]+(?=\])/,lookbehind:!0,inside:{}},variable:{pattern:/(^\][ \t]?\[)[^\]]+(?=\]$)/,lookbehind:!0},url:{pattern:/(^\]\()[^\s)]+/,lookbehind:!0},string:{pattern:/(^[ \t]+)"(?:\\.|[^"\\])*"(?=\)$)/,lookbehind:!0}}}}),["url","bold","italic","strike"].forEach((function(t){["url","bold","italic","strike","code-snippet"].forEach((function(n){t!==n&&(e.languages.markdown[t].inside.content.inside[n]=e.languages.markdown[n])}))})),e.hooks.add("after-tokenize",(function(e){"markdown"!==e.language&&"md"!==e.language||function e(t){if(t&&"string"!=typeof t)for(var n=0,a=t.length;n",quot:'"'},l=String.fromCodePoint||String.fromCharCode;e.languages.md=e.languages.markdown}(r),r.languages.graphql={comment:/#.*/,description:{pattern:/(?:"""(?:[^"]|(?!""")")*"""|"(?:\\.|[^\\"\r\n])*")(?=\s*[a-z_])/i,greedy:!0,alias:"string",inside:{"language-markdown":{pattern:/(^"(?:"")?)(?!\1)[\s\S]+(?=\1$)/,lookbehind:!0,inside:r.languages.markdown}}},string:{pattern:/"""(?:[^"]|(?!""")")*"""|"(?:\\.|[^\\"\r\n])*"/,greedy:!0},number:/(?:\B-|\b)\d+(?:\.\d+)?(?:e[+-]?\d+)?\b/i,boolean:/\b(?:false|true)\b/,variable:/\$[a-z_]\w*/i,directive:{pattern:/@[a-z_]\w*/i,alias:"function"},"attr-name":{pattern:/\b[a-z_]\w*(?=\s*(?:\((?:[^()"]|"(?:\\.|[^\\"\r\n])*")*\))?:)/i,greedy:!0},"atom-input":{pattern:/\b[A-Z]\w*Input\b/,alias:"class-name"},scalar:/\b(?:Boolean|Float|ID|Int|String)\b/,constant:/\b[A-Z][A-Z_\d]*\b/,"class-name":{pattern:/(\b(?:enum|implements|interface|on|scalar|type|union)\s+|&\s*|:\s*|\[)[A-Z_]\w*/,lookbehind:!0},fragment:{pattern:/(\bfragment\s+|\.{3}\s*(?!on\b))[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},"definition-mutation":{pattern:/(\bmutation\s+)[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},"definition-query":{pattern:/(\bquery\s+)[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},keyword:/\b(?:directive|enum|extend|fragment|implements|input|interface|mutation|on|query|repeatable|scalar|schema|subscription|type|union)\b/,operator:/[!=|&]|\.{3}/,"property-query":/\w+(?=\s*\()/,object:/\w+(?=\s*\{)/,punctuation:/[!(){}\[\]:=,]/,property:/\w+/},r.hooks.add("after-tokenize",(function(e){if("graphql"===e.language)for(var t=e.tokens.filter((function(e){return"string"!=typeof e&&"comment"!==e.type&&"scalar"!==e.type})),n=0;n0)){var s=p(/^\{$/,/^\}$/);if(-1===s)continue;for(var l=n;l=0&&f(c,"variable-input")}}}}function u(e){return t[n+e]}function d(e,t){t=t||0;for(var n=0;n?|<|>)?|>[>=]?|\b(?:AND|BETWEEN|DIV|ILIKE|IN|IS|LIKE|NOT|OR|REGEXP|RLIKE|SOUNDS LIKE|XOR)\b/i,punctuation:/[;[\]()`,.]/},function(e){var t=e.languages.javascript["template-string"],n=t.pattern.source,a=t.inside.interpolation,r=a.inside["interpolation-punctuation"],i=a.pattern.source;function o(t,a){if(e.languages[t])return{pattern:RegExp("((?:"+a+")\\s*)"+n),lookbehind:!0,greedy:!0,inside:{"template-punctuation":{pattern:/^`|`$/,alias:"string"},"embedded-code":{pattern:/[\s\S]+/,alias:t}}}}function s(e,t){return"___"+t.toUpperCase()+"_"+e+"___"}function l(t,n,a){var r={code:t,grammar:n,language:a};return e.hooks.run("before-tokenize",r),r.tokens=e.tokenize(r.code,r.grammar),e.hooks.run("after-tokenize",r),r.tokens}function c(t){var n={};n["interpolation-punctuation"]=r;var i=e.tokenize(t,n);if(3===i.length){var o=[1,1];o.push.apply(o,l(i[1],e.languages.javascript,"javascript")),i.splice.apply(i,o)}return new e.Token("interpolation",i,a.alias,t)}function u(t,n,a){var r=e.tokenize(t,{interpolation:{pattern:RegExp(i),lookbehind:!0}}),o=0,u={},d=l(r.map((function(e){if("string"==typeof e)return e;for(var n,r=e.content;-1!==t.indexOf(n=s(o++,a)););return u[n]=r,n})).join(""),n,a),p=Object.keys(u);return o=0,function e(t){for(var n=0;n=p.length)return;var a=t[n];if("string"==typeof a||"string"==typeof a.content){var r=p[o],i="string"==typeof a?a:a.content,s=i.indexOf(r);if(-1!==s){++o;var l=i.substring(0,s),d=c(u[r]),f=i.substring(s+r.length),m=[];if(l&&m.push(l),m.push(d),f){var h=[f];e(h),m.push.apply(m,h)}"string"==typeof a?(t.splice.apply(t,[n,1].concat(m)),n+=m.length-1):a.content=m}}else{var b=a.content;Array.isArray(b)?e(b):e([b])}}}(d),new e.Token(a,d,"language-"+a,t)}e.languages.javascript["template-string"]=[o("css",/\b(?:styled(?:\([^)]*\))?(?:\s*\.\s*\w+(?:\([^)]*\))*)*|css(?:\s*\.\s*(?:global|resolve))?|createGlobalStyle|keyframes)/.source),o("html",/\bhtml|\.\s*(?:inner|outer)HTML\s*\+?=/.source),o("svg",/\bsvg/.source),o("markdown",/\b(?:markdown|md)/.source),o("graphql",/\b(?:gql|graphql(?:\s*\.\s*experimental)?)/.source),o("sql",/\bsql/.source),t].filter(Boolean);var d={javascript:!0,js:!0,typescript:!0,ts:!0,jsx:!0,tsx:!0};function p(e){return"string"==typeof e?e:Array.isArray(e)?e.map(p).join(""):p(e.content)}e.hooks.add("after-tokenize",(function(t){t.language in d&&function t(n){for(var a=0,r=n.length;a]|<(?:[^<>]|<[^<>]*>)*>)*>)?/,lookbehind:!0,greedy:!0,inside:null},builtin:/\b(?:Array|Function|Promise|any|boolean|console|never|number|string|symbol|unknown)\b/}),e.languages.typescript.keyword.push(/\b(?:abstract|declare|is|keyof|readonly|require)\b/,/\b(?:asserts|infer|interface|module|namespace|type)\b(?=\s*(?:[{_$a-zA-Z\xA0-\uFFFF]|$))/,/\btype\b(?=\s*(?:[\{*]|$))/),delete e.languages.typescript.parameter,delete e.languages.typescript["literal-property"];var t=e.languages.extend("typescript",{});delete t["class-name"],e.languages.typescript["class-name"].inside=t,e.languages.insertBefore("typescript","function",{decorator:{pattern:/@[$\w\xA0-\uFFFF]+/,inside:{at:{pattern:/^@/,alias:"operator"},function:/^[\s\S]+/}},"generic-function":{pattern:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*\s*<(?:[^<>]|<(?:[^<>]|<[^<>]*>)*>)*>(?=\s*\()/,greedy:!0,inside:{function:/^#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*/,generic:{pattern:/<[\s\S]+/,alias:"class-name",inside:t}}}}),e.languages.ts=e.languages.typescript}(r),function(e){function t(e,t){return RegExp(e.replace(//g,(function(){return/(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*/.source})),t)}e.languages.insertBefore("javascript","function-variable",{"method-variable":{pattern:RegExp("(\\.\\s*)"+e.languages.javascript["function-variable"].pattern.source),lookbehind:!0,alias:["function-variable","method","function","property-access"]}}),e.languages.insertBefore("javascript","function",{method:{pattern:RegExp("(\\.\\s*)"+e.languages.javascript.function.source),lookbehind:!0,alias:["function","property-access"]}}),e.languages.insertBefore("javascript","constant",{"known-class-name":[{pattern:/\b(?:(?:Float(?:32|64)|(?:Int|Uint)(?:8|16|32)|Uint8Clamped)?Array|ArrayBuffer|BigInt|Boolean|DataView|Date|Error|Function|Intl|JSON|(?:Weak)?(?:Map|Set)|Math|Number|Object|Promise|Proxy|Reflect|RegExp|String|Symbol|WebAssembly)\b/,alias:"class-name"},{pattern:/\b(?:[A-Z]\w*)Error\b/,alias:"class-name"}]}),e.languages.insertBefore("javascript","keyword",{imports:{pattern:t(/(\bimport\b\s*)(?:(?:\s*,\s*(?:\*\s*as\s+|\{[^{}]*\}))?|\*\s*as\s+|\{[^{}]*\})(?=\s*\bfrom\b)/.source),lookbehind:!0,inside:e.languages.javascript},exports:{pattern:t(/(\bexport\b\s*)(?:\*(?:\s*as\s+)?(?=\s*\bfrom\b)|\{[^{}]*\})/.source),lookbehind:!0,inside:e.languages.javascript}}),e.languages.javascript.keyword.unshift({pattern:/\b(?:as|default|export|from|import)\b/,alias:"module"},{pattern:/\b(?:await|break|catch|continue|do|else|finally|for|if|return|switch|throw|try|while|yield)\b/,alias:"control-flow"},{pattern:/\bnull\b/,alias:["null","nil"]},{pattern:/\bundefined\b/,alias:"nil"}),e.languages.insertBefore("javascript","operator",{spread:{pattern:/\.{3}/,alias:"operator"},arrow:{pattern:/=>/,alias:"operator"}}),e.languages.insertBefore("javascript","punctuation",{"property-access":{pattern:t(/(\.\s*)#?/.source),lookbehind:!0},"maybe-class-name":{pattern:/(^|[^$\w\xA0-\uFFFF])[A-Z][$\w\xA0-\uFFFF]+/,lookbehind:!0},dom:{pattern:/\b(?:document|(?:local|session)Storage|location|navigator|performance|window)\b/,alias:"variable"},console:{pattern:/\bconsole(?=\s*\.)/,alias:"class-name"}});for(var n=["function","function-variable","method","method-variable","property-access"],a=0;a*\.{3}(?:[^{}]|)*\})/.source;function i(e,t){return e=e.replace(//g,(function(){return n})).replace(//g,(function(){return a})).replace(//g,(function(){return r})),RegExp(e,t)}r=i(r).source,e.languages.jsx=e.languages.extend("markup",t),e.languages.jsx.tag.pattern=i(/<\/?(?:[\w.:-]+(?:+(?:[\w.:$-]+(?:=(?:"(?:\\[\s\S]|[^\\"])*"|'(?:\\[\s\S]|[^\\'])*'|[^\s{'"/>=]+|))?|))**\/?)?>/.source),e.languages.jsx.tag.inside.tag.pattern=/^<\/?[^\s>\/]*/,e.languages.jsx.tag.inside["attr-value"].pattern=/=(?!\{)(?:"(?:\\[\s\S]|[^\\"])*"|'(?:\\[\s\S]|[^\\'])*'|[^\s'">]+)/,e.languages.jsx.tag.inside.tag.inside["class-name"]=/^[A-Z]\w*(?:\.[A-Z]\w*)*$/,e.languages.jsx.tag.inside.comment=t.comment,e.languages.insertBefore("inside","attr-name",{spread:{pattern:i(//.source),inside:e.languages.jsx}},e.languages.jsx.tag),e.languages.insertBefore("inside","special-attr",{script:{pattern:i(/=/.source),alias:"language-javascript",inside:{"script-punctuation":{pattern:/^=(?=\{)/,alias:"punctuation"},rest:e.languages.jsx}}},e.languages.jsx.tag);var o=function(e){return e?"string"==typeof e?e:"string"==typeof e.content?e.content:e.content.map(o).join(""):""},s=function(t){for(var n=[],a=0;a0&&n[n.length-1].tagName===o(r.content[0].content[1])&&n.pop():"/>"===r.content[r.content.length-1].content||n.push({tagName:o(r.content[0].content[1]),openedBraces:0}):n.length>0&&"punctuation"===r.type&&"{"===r.content?n[n.length-1].openedBraces++:n.length>0&&n[n.length-1].openedBraces>0&&"punctuation"===r.type&&"}"===r.content?n[n.length-1].openedBraces--:i=!0),(i||"string"==typeof r)&&n.length>0&&0===n[n.length-1].openedBraces){var l=o(r);a0&&("string"==typeof t[a-1]||"plain-text"===t[a-1].type)&&(l=o(t[a-1])+l,t.splice(a-1,1),a--),t[a]=new e.Token("plain-text",l,null,l)}r.content&&"string"!=typeof r.content&&s(r.content)}};e.hooks.add("after-tokenize",(function(e){"jsx"!==e.language&&"tsx"!==e.language||s(e.tokens)}))}(r),function(e){e.languages.diff={coord:[/^(?:\*{3}|-{3}|\+{3}).*$/m,/^@@.*@@$/m,/^\d.*$/m]};var t={"deleted-sign":"-","deleted-arrow":"<","inserted-sign":"+","inserted-arrow":">",unchanged:" ",diff:"!"};Object.keys(t).forEach((function(n){var a=t[n],r=[];/^\w+$/.test(n)||r.push(/\w+/.exec(n)[0]),"diff"===n&&r.push("bold"),e.languages.diff[n]={pattern:RegExp("^(?:["+a+"].*(?:\r\n?|\n|(?![\\s\\S])))+","m"),alias:r,inside:{line:{pattern:/(.)(?=[\s\S]).*(?:\r\n?|\n)?/,lookbehind:!0},prefix:{pattern:/[\s\S]/,alias:/\w+/.exec(n)[0]}}}})),Object.defineProperty(e.languages.diff,"PREFIXES",{value:t})}(r),r.languages.git={comment:/^#.*/m,deleted:/^[-\u2013].*/m,inserted:/^\+.*/m,string:/("|')(?:\\.|(?!\1)[^\\\r\n])*\1/,command:{pattern:/^.*\$ git .*$/m,inside:{parameter:/\s--?\w+/}},coord:/^@@.*@@$/m,"commit-sha1":/^commit \w{40}$/m},r.languages.go=r.languages.extend("clike",{string:{pattern:/(^|[^\\])"(?:\\.|[^"\\\r\n])*"|`[^`]*`/,lookbehind:!0,greedy:!0},keyword:/\b(?:break|case|chan|const|continue|default|defer|else|fallthrough|for|func|go(?:to)?|if|import|interface|map|package|range|return|select|struct|switch|type|var)\b/,boolean:/\b(?:_|false|iota|nil|true)\b/,number:[/\b0(?:b[01_]+|o[0-7_]+)i?\b/i,/\b0x(?:[a-f\d_]+(?:\.[a-f\d_]*)?|\.[a-f\d_]+)(?:p[+-]?\d+(?:_\d+)*)?i?(?!\w)/i,/(?:\b\d[\d_]*(?:\.[\d_]*)?|\B\.\d[\d_]*)(?:e[+-]?[\d_]+)?i?(?!\w)/i],operator:/[*\/%^!=]=?|\+[=+]?|-[=-]?|\|[=|]?|&(?:=|&|\^=?)?|>(?:>=?|=)?|<(?:<=?|=|-)?|:=|\.\.\./,builtin:/\b(?:append|bool|byte|cap|close|complex|complex(?:64|128)|copy|delete|error|float(?:32|64)|u?int(?:8|16|32|64)?|imag|len|make|new|panic|print(?:ln)?|real|recover|rune|string|uintptr)\b/}),r.languages.insertBefore("go","string",{char:{pattern:/'(?:\\.|[^'\\\r\n]){0,10}'/,greedy:!0}}),delete r.languages.go["class-name"],function(e){function t(e,t){return"___"+e.toUpperCase()+t+"___"}Object.defineProperties(e.languages["markup-templating"]={},{buildPlaceholders:{value:function(n,a,r,i){if(n.language===a){var o=n.tokenStack=[];n.code=n.code.replace(r,(function(e){if("function"==typeof i&&!i(e))return e;for(var r,s=o.length;-1!==n.code.indexOf(r=t(a,s));)++s;return o[s]=e,r})),n.grammar=e.languages.markup}}},tokenizePlaceholders:{value:function(n,a){if(n.language===a&&n.tokenStack){n.grammar=e.languages[a];var r=0,i=Object.keys(n.tokenStack);!function o(s){for(var l=0;l=i.length);l++){var c=s[l];if("string"==typeof c||c.content&&"string"==typeof c.content){var u=i[r],d=n.tokenStack[u],p="string"==typeof c?c:c.content,f=t(a,u),m=p.indexOf(f);if(m>-1){++r;var h=p.substring(0,m),b=new e.Token(a,e.tokenize(d,n.grammar),"language-"+a,d),g=p.substring(m+f.length),y=[];h&&y.push.apply(y,o([h])),y.push(b),g&&y.push.apply(y,o([g])),"string"==typeof c?s.splice.apply(s,[l,1].concat(y)):c.content=y}}else c.content&&o(c.content)}return s}(n.tokens)}}}})}(r),function(e){e.languages.handlebars={comment:/\{\{![\s\S]*?\}\}/,delimiter:{pattern:/^\{\{\{?|\}\}\}?$/,alias:"punctuation"},string:/(["'])(?:\\.|(?!\1)[^\\\r\n])*\1/,number:/\b0x[\dA-Fa-f]+\b|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:[Ee][+-]?\d+)?/,boolean:/\b(?:false|true)\b/,block:{pattern:/^(\s*(?:~\s*)?)[#\/]\S+?(?=\s*(?:~\s*)?$|\s)/,lookbehind:!0,alias:"keyword"},brackets:{pattern:/\[[^\]]+\]/,inside:{punctuation:/\[|\]/,variable:/[\s\S]+/}},punctuation:/[!"#%&':()*+,.\/;<=>@\[\\\]^`{|}~]/,variable:/[^!"#%&'()*+,\/;<=>@\[\\\]^`{|}~\s]+/},e.hooks.add("before-tokenize",(function(t){e.languages["markup-templating"].buildPlaceholders(t,"handlebars",/\{\{\{[\s\S]+?\}\}\}|\{\{[\s\S]+?\}\}/g)})),e.hooks.add("after-tokenize",(function(t){e.languages["markup-templating"].tokenizePlaceholders(t,"handlebars")})),e.languages.hbs=e.languages.handlebars}(r),r.languages.json={property:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?=\s*:)/,lookbehind:!0,greedy:!0},string:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?!\s*:)/,lookbehind:!0,greedy:!0},comment:{pattern:/\/\/.*|\/\*[\s\S]*?(?:\*\/|$)/,greedy:!0},number:/-?\b\d+(?:\.\d+)?(?:e[+-]?\d+)?\b/i,punctuation:/[{}[\],]/,operator:/:/,boolean:/\b(?:false|true)\b/,null:{pattern:/\bnull\b/,alias:"keyword"}},r.languages.webmanifest=r.languages.json,r.languages.less=r.languages.extend("css",{comment:[/\/\*[\s\S]*?\*\//,{pattern:/(^|[^\\])\/\/.*/,lookbehind:!0}],atrule:{pattern:/@[\w-](?:\((?:[^(){}]|\([^(){}]*\))*\)|[^(){};\s]|\s+(?!\s))*?(?=\s*\{)/,inside:{punctuation:/[:()]/}},selector:{pattern:/(?:@\{[\w-]+\}|[^{};\s@])(?:@\{[\w-]+\}|\((?:[^(){}]|\([^(){}]*\))*\)|[^(){};@\s]|\s+(?!\s))*?(?=\s*\{)/,inside:{variable:/@+[\w-]+/}},property:/(?:@\{[\w-]+\}|[\w-])+(?:\+_?)?(?=\s*:)/,operator:/[+\-*\/]/}),r.languages.insertBefore("less","property",{variable:[{pattern:/@[\w-]+\s*:/,inside:{punctuation:/:/}},/@@?[\w-]+/],"mixin-usage":{pattern:/([{;]\s*)[.#](?!\d)[\w-].*?(?=[(;])/,lookbehind:!0,alias:"function"}}),r.languages.makefile={comment:{pattern:/(^|[^\\])#(?:\\(?:\r\n|[\s\S])|[^\\\r\n])*/,lookbehind:!0},string:{pattern:/(["'])(?:\\(?:\r\n|[\s\S])|(?!\1)[^\\\r\n])*\1/,greedy:!0},"builtin-target":{pattern:/\.[A-Z][^:#=\s]+(?=\s*:(?!=))/,alias:"builtin"},target:{pattern:/^(?:[^:=\s]|[ \t]+(?![\s:]))+(?=\s*:(?!=))/m,alias:"symbol",inside:{variable:/\$+(?:(?!\$)[^(){}:#=\s]+|(?=[({]))/}},variable:/\$+(?:(?!\$)[^(){}:#=\s]+|\([@*%<^+?][DF]\)|(?=[({]))/,keyword:/-include\b|\b(?:define|else|endef|endif|export|ifn?def|ifn?eq|include|override|private|sinclude|undefine|unexport|vpath)\b/,function:{pattern:/(\()(?:abspath|addsuffix|and|basename|call|dir|error|eval|file|filter(?:-out)?|findstring|firstword|flavor|foreach|guile|if|info|join|lastword|load|notdir|or|origin|patsubst|realpath|shell|sort|strip|subst|suffix|value|warning|wildcard|word(?:list|s)?)(?=[ \t])/,lookbehind:!0},operator:/(?:::|[?:+!])?=|[|@]/,punctuation:/[:;(){}]/},r.languages.objectivec=r.languages.extend("c",{string:{pattern:/@?"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"/,greedy:!0},keyword:/\b(?:asm|auto|break|case|char|const|continue|default|do|double|else|enum|extern|float|for|goto|if|in|inline|int|long|register|return|self|short|signed|sizeof|static|struct|super|switch|typedef|typeof|union|unsigned|void|volatile|while)\b|(?:@interface|@end|@implementation|@protocol|@class|@public|@protected|@private|@property|@try|@catch|@finally|@throw|@synthesize|@dynamic|@selector)\b/,operator:/-[->]?|\+\+?|!=?|<>?=?|==?|&&?|\|\|?|[~^%?*\/@]/}),delete r.languages.objectivec["class-name"],r.languages.objc=r.languages.objectivec,r.languages.ocaml={comment:{pattern:/\(\*[\s\S]*?\*\)/,greedy:!0},char:{pattern:/'(?:[^\\\r\n']|\\(?:.|[ox]?[0-9a-f]{1,3}))'/i,greedy:!0},string:[{pattern:/"(?:\\(?:[\s\S]|\r\n)|[^\\\r\n"])*"/,greedy:!0},{pattern:/\{([a-z_]*)\|[\s\S]*?\|\1\}/,greedy:!0}],number:[/\b(?:0b[01][01_]*|0o[0-7][0-7_]*)\b/i,/\b0x[a-f0-9][a-f0-9_]*(?:\.[a-f0-9_]*)?(?:p[+-]?\d[\d_]*)?(?!\w)/i,/\b\d[\d_]*(?:\.[\d_]*)?(?:e[+-]?\d[\d_]*)?(?!\w)/i],directive:{pattern:/\B#\w+/,alias:"property"},label:{pattern:/\B~\w+/,alias:"property"},"type-variable":{pattern:/\B'\w+/,alias:"function"},variant:{pattern:/`\w+/,alias:"symbol"},keyword:/\b(?:as|assert|begin|class|constraint|do|done|downto|else|end|exception|external|for|fun|function|functor|if|in|include|inherit|initializer|lazy|let|match|method|module|mutable|new|nonrec|object|of|open|private|rec|sig|struct|then|to|try|type|val|value|virtual|when|where|while|with)\b/,boolean:/\b(?:false|true)\b/,"operator-like-punctuation":{pattern:/\[[<>|]|[>|]\]|\{<|>\}/,alias:"punctuation"},operator:/\.[.~]|:[=>]|[=<>@^|&+\-*\/$%!?~][!$%&*+\-.\/:<=>?@^|~]*|\b(?:and|asr|land|lor|lsl|lsr|lxor|mod|or)\b/,punctuation:/;;|::|[(){}\[\].,:;#]|\b_\b/},r.languages.python={comment:{pattern:/(^|[^\\])#.*/,lookbehind:!0,greedy:!0},"string-interpolation":{pattern:/(?:f|fr|rf)(?:("""|''')[\s\S]*?\1|("|')(?:\\.|(?!\2)[^\\\r\n])*\2)/i,greedy:!0,inside:{interpolation:{pattern:/((?:^|[^{])(?:\{\{)*)\{(?!\{)(?:[^{}]|\{(?!\{)(?:[^{}]|\{(?!\{)(?:[^{}])+\})+\})+\}/,lookbehind:!0,inside:{"format-spec":{pattern:/(:)[^:(){}]+(?=\}$)/,lookbehind:!0},"conversion-option":{pattern:/![sra](?=[:}]$)/,alias:"punctuation"},rest:null}},string:/[\s\S]+/}},"triple-quoted-string":{pattern:/(?:[rub]|br|rb)?("""|''')[\s\S]*?\1/i,greedy:!0,alias:"string"},string:{pattern:/(?:[rub]|br|rb)?("|')(?:\\.|(?!\1)[^\\\r\n])*\1/i,greedy:!0},function:{pattern:/((?:^|\s)def[ \t]+)[a-zA-Z_]\w*(?=\s*\()/g,lookbehind:!0},"class-name":{pattern:/(\bclass\s+)\w+/i,lookbehind:!0},decorator:{pattern:/(^[\t ]*)@\w+(?:\.\w+)*/m,lookbehind:!0,alias:["annotation","punctuation"],inside:{punctuation:/\./}},keyword:/\b(?:_(?=\s*:)|and|as|assert|async|await|break|case|class|continue|def|del|elif|else|except|exec|finally|for|from|global|if|import|in|is|lambda|match|nonlocal|not|or|pass|print|raise|return|try|while|with|yield)\b/,builtin:/\b(?:__import__|abs|all|any|apply|ascii|basestring|bin|bool|buffer|bytearray|bytes|callable|chr|classmethod|cmp|coerce|compile|complex|delattr|dict|dir|divmod|enumerate|eval|execfile|file|filter|float|format|frozenset|getattr|globals|hasattr|hash|help|hex|id|input|int|intern|isinstance|issubclass|iter|len|list|locals|long|map|max|memoryview|min|next|object|oct|open|ord|pow|property|range|raw_input|reduce|reload|repr|reversed|round|set|setattr|slice|sorted|staticmethod|str|sum|super|tuple|type|unichr|unicode|vars|xrange|zip)\b/,boolean:/\b(?:False|None|True)\b/,number:/\b0(?:b(?:_?[01])+|o(?:_?[0-7])+|x(?:_?[a-f0-9])+)\b|(?:\b\d+(?:_\d+)*(?:\.(?:\d+(?:_\d+)*)?)?|\B\.\d+(?:_\d+)*)(?:e[+-]?\d+(?:_\d+)*)?j?(?!\w)/i,operator:/[-+%=]=?|!=|:=|\*\*?=?|\/\/?=?|<[<=>]?|>[=>]?|[&|^~]/,punctuation:/[{}[\];(),.:]/},r.languages.python["string-interpolation"].inside.interpolation.inside.rest=r.languages.python,r.languages.py=r.languages.python,r.languages.reason=r.languages.extend("clike",{string:{pattern:/"(?:\\(?:\r\n|[\s\S])|[^\\\r\n"])*"/,greedy:!0},"class-name":/\b[A-Z]\w*/,keyword:/\b(?:and|as|assert|begin|class|constraint|do|done|downto|else|end|exception|external|for|fun|function|functor|if|in|include|inherit|initializer|lazy|let|method|module|mutable|new|nonrec|object|of|open|or|private|rec|sig|struct|switch|then|to|try|type|val|virtual|when|while|with)\b/,operator:/\.{3}|:[:=]|\|>|->|=(?:==?|>)?|<=?|>=?|[|^?'#!~`]|[+\-*\/]\.?|\b(?:asr|land|lor|lsl|lsr|lxor|mod)\b/}),r.languages.insertBefore("reason","class-name",{char:{pattern:/'(?:\\x[\da-f]{2}|\\o[0-3][0-7][0-7]|\\\d{3}|\\.|[^'\\\r\n])'/,greedy:!0},constructor:/\b[A-Z]\w*\b(?!\s*\.)/,label:{pattern:/\b[a-z]\w*(?=::)/,alias:"symbol"}}),delete r.languages.reason.function,function(e){e.languages.sass=e.languages.extend("css",{comment:{pattern:/^([ \t]*)\/[\/*].*(?:(?:\r?\n|\r)\1[ \t].+)*/m,lookbehind:!0,greedy:!0}}),e.languages.insertBefore("sass","atrule",{"atrule-line":{pattern:/^(?:[ \t]*)[@+=].+/m,greedy:!0,inside:{atrule:/(?:@[\w-]+|[+=])/}}}),delete e.languages.sass.atrule;var t=/\$[-\w]+|#\{\$[-\w]+\}/,n=[/[+*\/%]|[=!]=|<=?|>=?|\b(?:and|not|or)\b/,{pattern:/(\s)-(?=\s)/,lookbehind:!0}];e.languages.insertBefore("sass","property",{"variable-line":{pattern:/^[ \t]*\$.+/m,greedy:!0,inside:{punctuation:/:/,variable:t,operator:n}},"property-line":{pattern:/^[ \t]*(?:[^:\s]+ *:.*|:[^:\s].*)/m,greedy:!0,inside:{property:[/[^:\s]+(?=\s*:)/,{pattern:/(:)[^:\s]+/,lookbehind:!0}],punctuation:/:/,variable:t,operator:n,important:e.languages.sass.important}}}),delete e.languages.sass.property,delete e.languages.sass.important,e.languages.insertBefore("sass","punctuation",{selector:{pattern:/^([ \t]*)\S(?:,[^,\r\n]+|[^,\r\n]*)(?:,[^,\r\n]+)*(?:,(?:\r?\n|\r)\1[ \t]+\S(?:,[^,\r\n]+|[^,\r\n]*)(?:,[^,\r\n]+)*)*/m,lookbehind:!0,greedy:!0}})}(r),r.languages.scss=r.languages.extend("css",{comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0},atrule:{pattern:/@[\w-](?:\([^()]+\)|[^()\s]|\s+(?!\s))*?(?=\s+[{;])/,inside:{rule:/@[\w-]+/}},url:/(?:[-a-z]+-)?url(?=\()/i,selector:{pattern:/(?=\S)[^@;{}()]?(?:[^@;{}()\s]|\s+(?!\s)|#\{\$[-\w]+\})+(?=\s*\{(?:\}|\s|[^}][^:{}]*[:{][^}]))/,inside:{parent:{pattern:/&/,alias:"important"},placeholder:/%[-\w]+/,variable:/\$[-\w]+|#\{\$[-\w]+\}/}},property:{pattern:/(?:[-\w]|\$[-\w]|#\{\$[-\w]+\})+(?=\s*:)/,inside:{variable:/\$[-\w]+|#\{\$[-\w]+\}/}}}),r.languages.insertBefore("scss","atrule",{keyword:[/@(?:content|debug|each|else(?: if)?|extend|for|forward|function|if|import|include|mixin|return|use|warn|while)\b/i,{pattern:/( )(?:from|through)(?= )/,lookbehind:!0}]}),r.languages.insertBefore("scss","important",{variable:/\$[-\w]+|#\{\$[-\w]+\}/}),r.languages.insertBefore("scss","function",{"module-modifier":{pattern:/\b(?:as|hide|show|with)\b/i,alias:"keyword"},placeholder:{pattern:/%[-\w]+/,alias:"selector"},statement:{pattern:/\B!(?:default|optional)\b/i,alias:"keyword"},boolean:/\b(?:false|true)\b/,null:{pattern:/\bnull\b/,alias:"keyword"},operator:{pattern:/(\s)(?:[-+*\/%]|[=!]=|<=?|>=?|and|not|or)(?=\s)/,lookbehind:!0}}),r.languages.scss.atrule.inside.rest=r.languages.scss,function(e){var t={pattern:/(\b\d+)(?:%|[a-z]+)/,lookbehind:!0},n={pattern:/(^|[^\w.-])-?(?:\d+(?:\.\d+)?|\.\d+)/,lookbehind:!0},a={comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0},url:{pattern:/\burl\((["']?).*?\1\)/i,greedy:!0},string:{pattern:/("|')(?:(?!\1)[^\\\r\n]|\\(?:\r\n|[\s\S]))*\1/,greedy:!0},interpolation:null,func:null,important:/\B!(?:important|optional)\b/i,keyword:{pattern:/(^|\s+)(?:(?:else|for|if|return|unless)(?=\s|$)|@[\w-]+)/,lookbehind:!0},hexcode:/#[\da-f]{3,6}/i,color:[/\b(?:AliceBlue|AntiqueWhite|Aqua|Aquamarine|Azure|Beige|Bisque|Black|BlanchedAlmond|Blue|BlueViolet|Brown|BurlyWood|CadetBlue|Chartreuse|Chocolate|Coral|CornflowerBlue|Cornsilk|Crimson|Cyan|DarkBlue|DarkCyan|DarkGoldenRod|DarkGr[ae]y|DarkGreen|DarkKhaki|DarkMagenta|DarkOliveGreen|DarkOrange|DarkOrchid|DarkRed|DarkSalmon|DarkSeaGreen|DarkSlateBlue|DarkSlateGr[ae]y|DarkTurquoise|DarkViolet|DeepPink|DeepSkyBlue|DimGr[ae]y|DodgerBlue|FireBrick|FloralWhite|ForestGreen|Fuchsia|Gainsboro|GhostWhite|Gold|GoldenRod|Gr[ae]y|Green|GreenYellow|HoneyDew|HotPink|IndianRed|Indigo|Ivory|Khaki|Lavender|LavenderBlush|LawnGreen|LemonChiffon|LightBlue|LightCoral|LightCyan|LightGoldenRodYellow|LightGr[ae]y|LightGreen|LightPink|LightSalmon|LightSeaGreen|LightSkyBlue|LightSlateGr[ae]y|LightSteelBlue|LightYellow|Lime|LimeGreen|Linen|Magenta|Maroon|MediumAquaMarine|MediumBlue|MediumOrchid|MediumPurple|MediumSeaGreen|MediumSlateBlue|MediumSpringGreen|MediumTurquoise|MediumVioletRed|MidnightBlue|MintCream|MistyRose|Moccasin|NavajoWhite|Navy|OldLace|Olive|OliveDrab|Orange|OrangeRed|Orchid|PaleGoldenRod|PaleGreen|PaleTurquoise|PaleVioletRed|PapayaWhip|PeachPuff|Peru|Pink|Plum|PowderBlue|Purple|Red|RosyBrown|RoyalBlue|SaddleBrown|Salmon|SandyBrown|SeaGreen|SeaShell|Sienna|Silver|SkyBlue|SlateBlue|SlateGr[ae]y|Snow|SpringGreen|SteelBlue|Tan|Teal|Thistle|Tomato|Transparent|Turquoise|Violet|Wheat|White|WhiteSmoke|Yellow|YellowGreen)\b/i,{pattern:/\b(?:hsl|rgb)\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*\)\B|\b(?:hsl|rgb)a\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*,\s*(?:0|0?\.\d+|1)\s*\)\B/i,inside:{unit:t,number:n,function:/[\w-]+(?=\()/,punctuation:/[(),]/}}],entity:/\\[\da-f]{1,8}/i,unit:t,boolean:/\b(?:false|true)\b/,operator:[/~|[+!\/%<>?=]=?|[-:]=|\*[*=]?|\.{2,3}|&&|\|\||\B-\B|\b(?:and|in|is(?: a| defined| not|nt)?|not|or)\b/],number:n,punctuation:/[{}()\[\];:,]/};a.interpolation={pattern:/\{[^\r\n}:]+\}/,alias:"variable",inside:{delimiter:{pattern:/^\{|\}$/,alias:"punctuation"},rest:a}},a.func={pattern:/[\w-]+\([^)]*\).*/,inside:{function:/^[^(]+/,rest:a}},e.languages.stylus={"atrule-declaration":{pattern:/(^[ \t]*)@.+/m,lookbehind:!0,inside:{atrule:/^@[\w-]+/,rest:a}},"variable-declaration":{pattern:/(^[ \t]*)[\w$-]+\s*.?=[ \t]*(?:\{[^{}]*\}|\S.*|$)/m,lookbehind:!0,inside:{variable:/^\S+/,rest:a}},statement:{pattern:/(^[ \t]*)(?:else|for|if|return|unless)[ \t].+/m,lookbehind:!0,inside:{keyword:/^\S+/,rest:a}},"property-declaration":{pattern:/((?:^|\{)([ \t]*))(?:[\w-]|\{[^}\r\n]+\})+(?:\s*:\s*|[ \t]+)(?!\s)[^{\r\n]*(?:;|[^{\r\n,]$(?!(?:\r?\n|\r)(?:\{|\2[ \t])))/m,lookbehind:!0,inside:{property:{pattern:/^[^\s:]+/,inside:{interpolation:a.interpolation}},rest:a}},selector:{pattern:/(^[ \t]*)(?:(?=\S)(?:[^{}\r\n:()]|::?[\w-]+(?:\([^)\r\n]*\)|(?![\w-]))|\{[^}\r\n]+\})+)(?:(?:\r?\n|\r)(?:\1(?:(?=\S)(?:[^{}\r\n:()]|::?[\w-]+(?:\([^)\r\n]*\)|(?![\w-]))|\{[^}\r\n]+\})+)))*(?:,$|\{|(?=(?:\r?\n|\r)(?:\{|\1[ \t])))/m,lookbehind:!0,inside:{interpolation:a.interpolation,comment:a.comment,punctuation:/[{},]/}},func:a.func,string:a.string,comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0,greedy:!0},interpolation:a.interpolation,punctuation:/[{}()\[\];:.]/}}(r),function(e){var t=e.util.clone(e.languages.typescript);e.languages.tsx=e.languages.extend("jsx",t),delete e.languages.tsx.parameter,delete e.languages.tsx["literal-property"];var n=e.languages.tsx.tag;n.pattern=RegExp(/(^|[^\w$]|(?=<\/))/.source+"(?:"+n.pattern.source+")",n.pattern.flags),n.lookbehind=!0}(r),r.languages.wasm={comment:[/\(;[\s\S]*?;\)/,{pattern:/;;.*/,greedy:!0}],string:{pattern:/"(?:\\[\s\S]|[^"\\])*"/,greedy:!0},keyword:[{pattern:/\b(?:align|offset)=/,inside:{operator:/=/}},{pattern:/\b(?:(?:f32|f64|i32|i64)(?:\.(?:abs|add|and|ceil|clz|const|convert_[su]\/i(?:32|64)|copysign|ctz|demote\/f64|div(?:_[su])?|eqz?|extend_[su]\/i32|floor|ge(?:_[su])?|gt(?:_[su])?|le(?:_[su])?|load(?:(?:8|16|32)_[su])?|lt(?:_[su])?|max|min|mul|neg?|nearest|or|popcnt|promote\/f32|reinterpret\/[fi](?:32|64)|rem_[su]|rot[lr]|shl|shr_[su]|sqrt|store(?:8|16|32)?|sub|trunc(?:_[su]\/f(?:32|64))?|wrap\/i64|xor))?|memory\.(?:grow|size))\b/,inside:{punctuation:/\./}},/\b(?:anyfunc|block|br(?:_if|_table)?|call(?:_indirect)?|data|drop|elem|else|end|export|func|get_(?:global|local)|global|if|import|local|loop|memory|module|mut|nop|offset|param|result|return|select|set_(?:global|local)|start|table|tee_local|then|type|unreachable)\b/],variable:/\$[\w!#$%&'*+\-./:<=>?@\\^`|~]+/,number:/[+-]?\b(?:\d(?:_?\d)*(?:\.\d(?:_?\d)*)?(?:[eE][+-]?\d(?:_?\d)*)?|0x[\da-fA-F](?:_?[\da-fA-F])*(?:\.[\da-fA-F](?:_?[\da-fA-D])*)?(?:[pP][+-]?\d(?:_?\d)*)?)\b|\binf\b|\bnan(?::0x[\da-fA-F](?:_?[\da-fA-D])*)?\b/,punctuation:/[()]/};const i=r},74277:()=>{Prism.languages.json={property:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?=\s*:)/,lookbehind:!0,greedy:!0},string:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?!\s*:)/,lookbehind:!0,greedy:!0},comment:{pattern:/\/\/.*|\/\*[\s\S]*?(?:\*\/|$)/,greedy:!0},number:/-?\b\d+(?:\.\d+)?(?:e[+-]?\d+)?\b/i,punctuation:/[{}[\],]/,operator:/:/,boolean:/\b(?:false|true)\b/,null:{pattern:/\bnull\b/,alias:"keyword"}},Prism.languages.webmanifest=Prism.languages.json},99945:()=>{!function(e){var t=/\/\*[\s\S]*?\*\/|\/\/.*|#(?!\[).*/,n=[{pattern:/\b(?:false|true)\b/i,alias:"boolean"},{pattern:/(::\s*)\b[a-z_]\w*\b(?!\s*\()/i,greedy:!0,lookbehind:!0},{pattern:/(\b(?:case|const)\s+)\b[a-z_]\w*(?=\s*[;=])/i,greedy:!0,lookbehind:!0},/\b(?:null)\b/i,/\b[A-Z_][A-Z0-9_]*\b(?!\s*\()/],a=/\b0b[01]+(?:_[01]+)*\b|\b0o[0-7]+(?:_[0-7]+)*\b|\b0x[\da-f]+(?:_[\da-f]+)*\b|(?:\b\d+(?:_\d+)*\.?(?:\d+(?:_\d+)*)?|\B\.\d+)(?:e[+-]?\d+)?/i,r=/|\?\?=?|\.{3}|\??->|[!=]=?=?|::|\*\*=?|--|\+\+|&&|\|\||<<|>>|[?~]|[/^|%*&<>.+-]=?/,i=/[{}\[\](),:;]/;e.languages.php={delimiter:{pattern:/\?>$|^<\?(?:php(?=\s)|=)?/i,alias:"important"},comment:t,variable:/\$+(?:\w+\b|(?=\{))/,package:{pattern:/(namespace\s+|use\s+(?:function\s+)?)(?:\\?\b[a-z_]\w*)+\b(?!\\)/i,lookbehind:!0,inside:{punctuation:/\\/}},"class-name-definition":{pattern:/(\b(?:class|enum|interface|trait)\s+)\b[a-z_]\w*(?!\\)\b/i,lookbehind:!0,alias:"class-name"},"function-definition":{pattern:/(\bfunction\s+)[a-z_]\w*(?=\s*\()/i,lookbehind:!0,alias:"function"},keyword:[{pattern:/(\(\s*)\b(?:array|bool|boolean|float|int|integer|object|string)\b(?=\s*\))/i,alias:"type-casting",greedy:!0,lookbehind:!0},{pattern:/([(,?]\s*)\b(?:array(?!\s*\()|bool|callable|(?:false|null)(?=\s*\|)|float|int|iterable|mixed|object|self|static|string)\b(?=\s*\$)/i,alias:"type-hint",greedy:!0,lookbehind:!0},{pattern:/(\)\s*:\s*(?:\?\s*)?)\b(?:array(?!\s*\()|bool|callable|(?:false|null)(?=\s*\|)|float|int|iterable|mixed|never|object|self|static|string|void)\b/i,alias:"return-type",greedy:!0,lookbehind:!0},{pattern:/\b(?:array(?!\s*\()|bool|float|int|iterable|mixed|object|string|void)\b/i,alias:"type-declaration",greedy:!0},{pattern:/(\|\s*)(?:false|null)\b|\b(?:false|null)(?=\s*\|)/i,alias:"type-declaration",greedy:!0,lookbehind:!0},{pattern:/\b(?:parent|self|static)(?=\s*::)/i,alias:"static-context",greedy:!0},{pattern:/(\byield\s+)from\b/i,lookbehind:!0},/\bclass\b/i,{pattern:/((?:^|[^\s>:]|(?:^|[^-])>|(?:^|[^:]):)\s*)\b(?:abstract|and|array|as|break|callable|case|catch|clone|const|continue|declare|default|die|do|echo|else|elseif|empty|enddeclare|endfor|endforeach|endif|endswitch|endwhile|enum|eval|exit|extends|final|finally|fn|for|foreach|function|global|goto|if|implements|include|include_once|instanceof|insteadof|interface|isset|list|match|namespace|never|new|or|parent|print|private|protected|public|readonly|require|require_once|return|self|static|switch|throw|trait|try|unset|use|var|while|xor|yield|__halt_compiler)\b/i,lookbehind:!0}],"argument-name":{pattern:/([(,]\s*)\b[a-z_]\w*(?=\s*:(?!:))/i,lookbehind:!0},"class-name":[{pattern:/(\b(?:extends|implements|instanceof|new(?!\s+self|\s+static))\s+|\bcatch\s*\()\b[a-z_]\w*(?!\\)\b/i,greedy:!0,lookbehind:!0},{pattern:/(\|\s*)\b[a-z_]\w*(?!\\)\b/i,greedy:!0,lookbehind:!0},{pattern:/\b[a-z_]\w*(?!\\)\b(?=\s*\|)/i,greedy:!0},{pattern:/(\|\s*)(?:\\?\b[a-z_]\w*)+\b/i,alias:"class-name-fully-qualified",greedy:!0,lookbehind:!0,inside:{punctuation:/\\/}},{pattern:/(?:\\?\b[a-z_]\w*)+\b(?=\s*\|)/i,alias:"class-name-fully-qualified",greedy:!0,inside:{punctuation:/\\/}},{pattern:/(\b(?:extends|implements|instanceof|new(?!\s+self\b|\s+static\b))\s+|\bcatch\s*\()(?:\\?\b[a-z_]\w*)+\b(?!\\)/i,alias:"class-name-fully-qualified",greedy:!0,lookbehind:!0,inside:{punctuation:/\\/}},{pattern:/\b[a-z_]\w*(?=\s*\$)/i,alias:"type-declaration",greedy:!0},{pattern:/(?:\\?\b[a-z_]\w*)+(?=\s*\$)/i,alias:["class-name-fully-qualified","type-declaration"],greedy:!0,inside:{punctuation:/\\/}},{pattern:/\b[a-z_]\w*(?=\s*::)/i,alias:"static-context",greedy:!0},{pattern:/(?:\\?\b[a-z_]\w*)+(?=\s*::)/i,alias:["class-name-fully-qualified","static-context"],greedy:!0,inside:{punctuation:/\\/}},{pattern:/([(,?]\s*)[a-z_]\w*(?=\s*\$)/i,alias:"type-hint",greedy:!0,lookbehind:!0},{pattern:/([(,?]\s*)(?:\\?\b[a-z_]\w*)+(?=\s*\$)/i,alias:["class-name-fully-qualified","type-hint"],greedy:!0,lookbehind:!0,inside:{punctuation:/\\/}},{pattern:/(\)\s*:\s*(?:\?\s*)?)\b[a-z_]\w*(?!\\)\b/i,alias:"return-type",greedy:!0,lookbehind:!0},{pattern:/(\)\s*:\s*(?:\?\s*)?)(?:\\?\b[a-z_]\w*)+\b(?!\\)/i,alias:["class-name-fully-qualified","return-type"],greedy:!0,lookbehind:!0,inside:{punctuation:/\\/}}],constant:n,function:{pattern:/(^|[^\\\w])\\?[a-z_](?:[\w\\]*\w)?(?=\s*\()/i,lookbehind:!0,inside:{punctuation:/\\/}},property:{pattern:/(->\s*)\w+/,lookbehind:!0},number:a,operator:r,punctuation:i};var o={pattern:/\{\$(?:\{(?:\{[^{}]+\}|[^{}]+)\}|[^{}])+\}|(^|[^\\{])\$+(?:\w+(?:\[[^\r\n\[\]]+\]|->\w+)?)/,lookbehind:!0,inside:e.languages.php},s=[{pattern:/<<<'([^']+)'[\r\n](?:.*[\r\n])*?\1;/,alias:"nowdoc-string",greedy:!0,inside:{delimiter:{pattern:/^<<<'[^']+'|[a-z_]\w*;$/i,alias:"symbol",inside:{punctuation:/^<<<'?|[';]$/}}}},{pattern:/<<<(?:"([^"]+)"[\r\n](?:.*[\r\n])*?\1;|([a-z_]\w*)[\r\n](?:.*[\r\n])*?\2;)/i,alias:"heredoc-string",greedy:!0,inside:{delimiter:{pattern:/^<<<(?:"[^"]+"|[a-z_]\w*)|[a-z_]\w*;$/i,alias:"symbol",inside:{punctuation:/^<<<"?|[";]$/}},interpolation:o}},{pattern:/`(?:\\[\s\S]|[^\\`])*`/,alias:"backtick-quoted-string",greedy:!0},{pattern:/'(?:\\[\s\S]|[^\\'])*'/,alias:"single-quoted-string",greedy:!0},{pattern:/"(?:\\[\s\S]|[^\\"])*"/,alias:"double-quoted-string",greedy:!0,inside:{interpolation:o}}];e.languages.insertBefore("php","variable",{string:s,attribute:{pattern:/#\[(?:[^"'\/#]|\/(?![*/])|\/\/.*$|#(?!\[).*$|\/\*(?:[^*]|\*(?!\/))*\*\/|"(?:\\[\s\S]|[^\\"])*"|'(?:\\[\s\S]|[^\\'])*')+\](?=\s*[a-z$#])/im,greedy:!0,inside:{"attribute-content":{pattern:/^(#\[)[\s\S]+(?=\]$)/,lookbehind:!0,inside:{comment:t,string:s,"attribute-class-name":[{pattern:/([^:]|^)\b[a-z_]\w*(?!\\)\b/i,alias:"class-name",greedy:!0,lookbehind:!0},{pattern:/([^:]|^)(?:\\?\b[a-z_]\w*)+/i,alias:["class-name","class-name-fully-qualified"],greedy:!0,lookbehind:!0,inside:{punctuation:/\\/}}],constant:n,number:a,operator:r,punctuation:i}},delimiter:{pattern:/^#\[|\]$/,alias:"punctuation"}}}}),e.hooks.add("before-tokenize",(function(t){if(/<\?/.test(t.code)){e.languages["markup-templating"].buildPlaceholders(t,"php",/<\?(?:[^"'/#]|\/(?![*/])|("|')(?:\\[\s\S]|(?!\1)[^\\])*\1|(?:\/\/|#(?!\[))(?:[^?\n\r]|\?(?!>))*(?=$|\?>|[\r\n])|#\[|\/\*(?:[^*]|\*(?!\/))*(?:\*\/|$))*?(?:\?>|$)/g)}})),e.hooks.add("after-tokenize",(function(t){e.languages["markup-templating"].tokenizePlaceholders(t,"php")}))}(Prism)},47147:(e,t,n)=>{var a={"./prism-json":74277,"./prism-php":99945};function r(e){var t=i(e);return n(t)}function i(e){if(!n.o(a,e)){var t=new Error("Cannot find module '"+e+"'");throw t.code="MODULE_NOT_FOUND",t}return a[e]}r.keys=function(){return Object.keys(a)},r.resolve=i,e.exports=r,r.id=47147},92703:(e,t,n)=>{"use strict";var a=n(50414);function r(){}function i(){}i.resetWarningCache=r,e.exports=function(){function e(e,t,n,r,i,o){if(o!==a){var s=new Error("Calling PropTypes validators directly is not supported by the `prop-types` package. Use PropTypes.checkPropTypes() to call them. Read more at http://fb.me/use-check-prop-types");throw s.name="Invariant Violation",s}}function t(){return e}e.isRequired=e;var n={array:e,bigint:e,bool:e,func:e,number:e,object:e,string:e,symbol:e,any:e,arrayOf:t,element:e,elementType:e,instanceOf:t,node:e,objectOf:t,oneOf:t,oneOfType:t,shape:t,exact:t,checkPropTypes:i,resetWarningCache:r};return n.PropTypes=n,n}},45697:(e,t,n)=>{e.exports=n(92703)()},50414:e=>{"use strict";e.exports="SECRET_DO_NOT_PASS_THIS_OR_YOU_WILL_BE_FIRED"},64448:(e,t,n)=>{"use strict";var a=n(67294),r=n(27418),i=n(63840);function o(e){for(var t="https://reactjs.org/docs/error-decoder.html?invariant="+e,n=1;n