forked from ryoppippi/Gasyori100knock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
answer_81.py
96 lines (68 loc) · 1.89 KB
/
answer_81.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Hessian corner detection
def Hessian_corner(img):
## Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
gray = gray.astype(np.uint8)
return gray
## Sobel
def Sobel_filtering(gray):
# get shape
H, W = gray.shape
# sobel kernel
sobely = np.array(((1, 2, 1),
(0, 0, 0),
(-1, -2, -1)), dtype=np.float32)
sobelx = np.array(((1, 0, -1),
(2, 0, -2),
(1, 0, -1)), dtype=np.float32)
# padding
tmp = np.pad(gray, (1, 1), 'edge')
# prepare
Ix = np.zeros_like(gray, dtype=np.float32)
Iy = np.zeros_like(gray, dtype=np.float32)
# get differential
for y in range(H):
for x in range(W):
Ix[y, x] = np.mean(tmp[y : y + 3, x : x + 3] * sobelx)
Iy[y, x] = np.mean(tmp[y : y + 3, x : x + 3] * sobely)
Ix2 = Ix ** 2
Iy2 = Iy ** 2
Ixy = Ix * Iy
return Ix2, Iy2, Ixy
## Hessian
def corner_detect(gray, Ix2, Iy2, Ixy):
# get shape
H, W = gray.shape
# prepare for show detection
out = np.array((gray, gray, gray))
out = np.transpose(out, (1,2,0))
# get Hessian value
Hes = np.zeros((H, W))
for y in range(H):
for x in range(W):
Hes[y,x] = Ix2[y,x] * Iy2[y,x] - Ixy[y,x] ** 2
## Detect Corner and show
for y in range(H):
for x in range(W):
if Hes[y,x] == np.max(Hes[max(y-1, 0) : min(y+2, H), max(x-1, 0) : min(x+2, W)]) and Hes[y, x] > np.max(Hes) * 0.1:
out[y, x] = [0, 0, 255]
out = out.astype(np.uint8)
return out
# 1. grayscale
gray = BGR2GRAY(img)
# 2. get difference image
Ix2, Iy2, Ixy = Sobel_filtering(gray)
# 3. corner detection
out = corner_detect(gray, Ix2, Iy2, Ixy)
return out
# Read image
img = cv2.imread("thorino.jpg").astype(np.float32)
# Hessian corner detection
out = Hessian_corner(img)
cv2.imwrite("out.jpg", out)
cv2.imshow("result", out)
cv2.waitKey(0)