forked from Casper-Guo/Armchair-Strategist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
529 lines (439 loc) · 15.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""Dash app layout and callbacks."""
import warnings
from collections import Counter
from pathlib import Path
from typing import Iterable, TypeAlias
import dash_bootstrap_components as dbc
import fastf1 as f
import pandas as pd
import tomli
from dash import Dash, Input, Output, State, callback, html
from plotly import graph_objects as go
import f1_visualization.plotly_dash.graphs as pg
from f1_visualization._consts import CURRENT_SEASON, SPRINT_FORMATS
from f1_visualization.plotly_dash.layout import app_layout, line_y_options, scatter_y_options
from f1_visualization.visualization import get_session_info, load_laps
# Silent SettingWithCopyWarning
pd.options.mode.chained_assignment = None
# Silent Fastf1 FutureWarning regarding the use of plotting functions
warnings.filterwarnings(action="ignore", message="Driver", category=FutureWarning)
Session_info: TypeAlias = tuple[int, str, list[str]]
# must not be modified
DF_DICT = load_laps()
with open(
Path(__file__).absolute().parent
/ "f1_visualization"
/ "plotly_dash"
/ "visualization_config.toml",
"rb",
) as toml:
COMPOUND_PALETTE = tomli.load(toml)["relative"]["high_contrast_palette"]
def df_convert_timedelta(df: pd.DataFrame) -> pd.DataFrame:
"""
Assumes df follows transformed_laps schema.
The pd.Timedelta type is not JSON serializable.
Columns with this data type need to be dropped or converted.
"""
timedelta_columns = ["Time", "PitInTime", "PitOutTime"]
# usually the Time column has no NaT values
# it is included here for consistency
df[timedelta_columns] = df[timedelta_columns].ffill()
for column in timedelta_columns:
df[column] = df[column].dt.total_seconds()
return df
def add_gap(driver: str, df_laps: pd.DataFrame) -> pd.DataFrame:
"""
Calculate the gap to a certain driver.
Compared to the implementation in visualization.py. Here we assume
that the Time column has been converted to float type and that df_laps
contain laps from one round only.
The second assumption is checked during merging.
"""
df_driver = df_laps[df_laps["Driver"] == driver][["LapNumber", "Time"]]
timing_column_name = f"{driver}Time"
df_driver = df_driver.rename(columns={"Time": timing_column_name})
df_laps = df_laps.merge(df_driver, on="LapNumber", validate="many_to_one")
df_laps[f"GapTo{driver}"] = df_laps["Time"] - df_laps[timing_column_name]
return df_laps.drop(columns=timing_column_name)
def configure_lap_numbers_slider(data: dict) -> tuple[int, list[int], dict[int, str]]:
"""Configure range slider based on the number of laps in a session."""
if not data:
return 60, [1, 60], {i: str(i) for i in [1] + list(range(5, 61, 5))}
try:
num_laps = max(data["LapNumber"].values())
except TypeError:
# the LapNumber column contains NaN, falls back to Pandas
# this has never been the case in existing data
df = pd.DataFrame.from_dict(data)
num_laps = df["LapNumber"].max()
marks = {i: str(i) for i in [1] + list(range(5, int(num_laps + 1), 5))}
return num_laps, [1, num_laps], marks
def style_compound_options(compounds: Iterable[str]) -> list[dict]:
"""Create compound dropdown options with styling."""
compound_order = ["SOFT", "MEDIUM", "HARD", "INTERMEDIATE", "WET"]
# discard unknown compounds
compounds = [compound for compound in compounds if compound in compound_order]
# sort the compounds
compound_index = [compound_order.index(compound) for compound in compounds]
sorted_compounds = sorted(zip(compounds, compound_index), key=lambda x: x[1])
compounds = [compound for compound, _ in sorted_compounds]
return [
{
"label": html.Span(compound, style={"color": COMPOUND_PALETTE[compound]}),
"value": compound,
}
for compound in compounds
]
app = Dash(
__name__,
external_stylesheets=[dbc.themes.SANDSTONE],
title="Armchair Strategist - A F1 Strategy Dashboard",
update_title="Crunching numbers...",
)
server = app.server
app.layout = app_layout
@callback(
Output("event", "options"),
Output("event", "value"),
Output("event-schedule", "data"),
Input("season", "value"),
prevent_initial_call=True,
)
def set_event_options(
season: int | None,
) -> tuple[list[str], None, dict]:
"""Get the names of all events in the selected season."""
if season is None:
return [], None, None
schedule = f.get_event_schedule(season, include_testing=False)
if season == CURRENT_SEASON:
# only include events for which we have processed data
last_round = DF_DICT[CURRENT_SEASON]["R"]["RoundNumber"].max()
schedule = schedule[schedule["RoundNumber"] <= last_round]
return (
list(schedule["EventName"]),
None,
schedule.set_index("EventName").to_dict(orient="index"),
)
@callback(
Output("session", "options"),
Output("session", "value"),
Input("event", "value"),
State("event-schedule", "data"),
prevent_initial_call=True,
)
def set_session_options(event: str | None, schedule: dict) -> tuple[list[dict], None]:
"""
Return the sessions contained in an event.
Event schedule is passed in as a dictionary with the event names as keys. The values map
column labels to the corresponding entry.
"""
if event is None:
return [], None
return [
{"label": "Race", "value": "R"},
{
"label": "Sprint",
"value": "S",
"disabled": schedule[event]["EventFormat"] not in SPRINT_FORMATS,
},
], None
@callback(
Output("load-session", "disabled"),
Input("season", "value"),
Input("event", "value"),
Input("session", "value"),
prevent_initial_call=True,
)
def enable_load_session(season: int | None, event: str | None, session: str | None) -> bool:
"""Toggles load session button on when the previous three fields are filled."""
return not (season is not None and event is not None and session is not None)
@callback(
Output("add-gap", "disabled"), Input("load-session", "n_clicks"), prevent_initial_call=True
)
def enable_add_gap(n_clicks: int) -> bool:
"""Enable the add-gap button after a session has been loaded."""
return n_clicks == 0
@callback(
Output("session-info", "data"),
Input("load-session", "n_clicks"),
State("season", "value"),
State("event", "value"),
State("session", "value"),
State("teammate-comp", "value"),
prevent_initial_call=True,
)
def get_session_metadata(
_: int, # ignores actual value of n_clicks
season: int,
event: str,
session: str,
teammate_comp: bool,
) -> Session_info:
"""
Store round number, event name, and the list of drivers into browser cache.
Can assume that season, event, and session are all set (not None).
"""
round_number, event_name, drivers = get_session_info(
season, event, session, teammate_comp=teammate_comp
)
event_name = f"{season} {event_name}"
return round_number, event_name, drivers
@callback(
Output("laps", "data"),
Input("load-session", "n_clicks"),
State("season", "value"),
State("event", "value"),
State("session", "value"),
prevent_initial_call=True,
)
def get_session_laps(
_: int, # ignores actual_value of n_clicks
season: int,
event: str,
session: str,
) -> dict:
"""
Save the laps of the selected session into browser cache.
Can assume that season, event, and session are all set (not None).
"""
included_laps = DF_DICT[season][session]
included_laps = included_laps[included_laps["EventName"] == event]
included_laps = df_convert_timedelta(included_laps)
return included_laps.to_dict()
@callback(
Output("drivers", "options"),
Output("drivers", "value"),
Output("drivers", "disabled"),
Output("gap-drivers", "options"),
Output("gap-drivers", "value"),
Output("gap-drivers", "disabled"),
Input("session-info", "data"),
prevent_initial_call=True,
)
def set_driver_dropdowns(session_info: Session_info):
"""Configure driver dropdowns."""
drivers = session_info[2]
return drivers, drivers, False, drivers, [], False
@callback(
Output("scatter-y", "options"),
Output("line-y", "options"),
Output("scatter-y", "value"),
Output("line-y", "value"),
Input("laps", "data"),
prevent_initial_call=True,
)
def set_y_axis_dropdowns(
data: dict,
) -> tuple[list[dict[str, str]], list[dict[str, str]], str, str]:
"""Update y axis options based on the columns in the laps dataframe."""
def readable_gap_col_name(col: str) -> str:
"""Convert Pandas GapTox column names to the more readable Gap to x."""
return f"Gap to {col[-3:]} (s)"
gap_cols = filter(lambda x: x.startswith("Gap"), data.keys())
gap_col_options = [{"label": readable_gap_col_name(col), "value": col} for col in gap_cols]
return (
scatter_y_options + gap_col_options,
line_y_options + gap_col_options,
"LapTime",
"Position",
)
@callback(
Output("compounds", "options"),
Output("compounds", "value"),
Output("compounds", "disabled"),
Input("laps", "data"),
prevent_initial_call=True,
)
def set_compounds_dropdown(data: dict) -> tuple[list[dict], list, bool]:
"""Update compound plot dropdown options based on the laps dataframe."""
# exploit how Pandas dataframes are converted to dictionaries
# avoid having to construct a new dataframe
compound_lap_count = Counter(data["Compound"].values())
eligible_compounds = [
compound
for compound, count in compound_lap_count.items()
if count >= (compound_lap_count.total() // 20)
]
return style_compound_options(eligible_compounds), [], False
@callback(
Output("laps", "data", allow_duplicate=True),
Input("add-gap", "n_clicks"),
State("gap-drivers", "value"),
State("laps", "data"),
running=[
(Output("gap-drivers", "disabled"), True, False),
(Output("add-gap", "disabled"), True, False),
(Output("add-gap", "children"), "Calculating...", "Add Gap"),
(Output("add-gap", "color"), "warning", "success"),
],
prevent_initial_call=True,
)
def add_gap_to_driver(_: int, drivers: list[str], data: dict) -> dict:
"""Amend the dataframe in cache and add driver gap columns."""
laps = pd.DataFrame.from_dict(data)
for driver in drivers:
if f"GapTo{driver}" not in laps.columns:
laps = add_gap(driver, laps)
return laps.to_dict()
@callback(
Output("lap-numbers-scatter", "max"),
Output("lap-numbers-scatter", "value"),
Output("lap-numbers-scatter", "marks"),
Input("laps", "data"),
)
def set_scatterplot_slider(data: dict) -> tuple[int, list[int], dict[int, str]]:
"""Set up scatterplot tab lap numbers slider."""
return configure_lap_numbers_slider(data)
@callback(
Output("lap-numbers-line", "max"),
Output("lap-numbers-line", "value"),
Output("lap-numbers-line", "marks"),
Input("laps", "data"),
)
def set_lineplot_slider(data: dict) -> tuple[int, list[int], dict[int, str]]:
"""Set up lineplot tab lap numbers slider."""
return configure_lap_numbers_slider(data)
@callback(
Output("strategy-plot", "figure"),
Input("drivers", "value"),
State("laps", "data"),
State("session-info", "data"),
)
def render_strategy_plot(
drivers: list[str],
included_laps: dict,
session_info: Session_info,
) -> go.Figure:
"""Filter laps and configure strategy plot title."""
# return empty figure on startup
if not included_laps or not drivers:
return go.Figure()
included_laps = pd.DataFrame.from_dict(included_laps)
included_laps = included_laps[included_laps["Driver"].isin(drivers)]
event_name = session_info[1]
fig = pg.strategy_barplot(included_laps, drivers)
fig.update_layout(title=event_name)
return fig
@callback(
Output("scatterplot", "figure"),
Input("drivers", "value"),
Input("scatter-y", "value"),
Input("upper-bound-scatter", "value"),
Input("lap-numbers-scatter", "value"),
State("laps", "data"),
State("session-info", "data"),
)
def render_scatterplot(
drivers: list[str],
y: str,
upper_bound: float,
lap_numbers: list[int],
included_laps: dict,
session_info: Session_info,
) -> go.Figure:
"""Filter laps and configure scatterplot title."""
if not included_laps or not drivers:
return go.Figure()
minimum, maximum = lap_numbers
lap_interval = range(minimum, maximum + 1)
included_laps = pd.DataFrame.from_dict(included_laps)
included_laps = included_laps[
(included_laps["Driver"].isin(drivers))
& (included_laps["PctFromFastest"] < (upper_bound - 100))
& (included_laps["LapNumber"].isin(lap_interval))
]
fig = pg.stats_scatterplot(included_laps, drivers, y)
event_name = session_info[1]
fig.update_layout(title=event_name)
return fig
@callback(
Output("lineplot", "figure"),
Input("drivers", "value"),
Input("line-y", "value"),
Input("upper-bound-line", "value"),
Input("lap-numbers-line", "value"),
State("laps", "data"),
State("session-info", "data"),
)
def render_lineplot(
drivers: list[str],
y: str,
upper_bound: float,
lap_numbers: list[int],
included_laps: dict,
session_info: Session_info,
) -> go.Figure:
"""Filter laps and configure lineplot title."""
if not included_laps or not drivers:
return go.Figure()
minimum, maximum = lap_numbers
lap_interval = range(minimum, maximum + 1)
included_laps = pd.DataFrame.from_dict(included_laps)
# upper bound not filtered here because we need to identify SC/VSC laps
# inside the function
included_laps = included_laps[
(included_laps["Driver"].isin(drivers))
& (included_laps["LapNumber"].isin(lap_interval))
]
fig = pg.stats_lineplot(included_laps, drivers, y, upper_bound)
event_name = session_info[1]
fig.update_layout(title=event_name)
return fig
@callback(
Output("distplot", "figure"),
Input("drivers", "value"),
Input("upper-bound-dist", "value"),
Input("boxplot", "value"),
State("laps", "data"),
State("session-info", "data"),
)
def render_distplot(
drivers: list[str],
upper_bound: int,
boxplot: bool,
included_laps: dict,
session_info: Session_info,
) -> go.Figure:
"""Filter laps and render distribution plot."""
if not included_laps or not drivers:
return go.Figure()
included_laps = pd.DataFrame.from_dict(included_laps)
included_laps = included_laps[
(included_laps["Driver"].isin(drivers))
& (included_laps["PctFromFastest"] < (upper_bound - 100))
]
fig = pg.stats_distplot(included_laps, drivers, boxplot)
event_name = session_info[1]
fig.update_layout(title=event_name)
return fig
@callback(
Output("compound-plot", "figure"),
Input("compounds", "value"),
Input("compound-unit", "value"),
State("laps", "data"),
State("session-info", "data"),
)
def render_compound_plot(
compounds: list[str],
show_seconds: bool,
included_laps: dict,
session_info: Session_info,
) -> go.Figure:
"""Filter laps and render compound performance plot."""
if not included_laps or not compounds:
return go.Figure()
included_laps = pd.DataFrame.from_dict(included_laps)
# TyreLife = 1 rows seem to always be outliers relative to the representative lap time
# might be because they are out laps
# filter them out so the graph is not stretched
included_laps = included_laps[
(included_laps["Compound"].isin(compounds)) & (included_laps["TyreLife"] != 1)
]
y = "DeltaToLapRep" if show_seconds else "PctFromLapRep"
fig = pg.compounds_lineplot(included_laps, y, compounds)
event_name = session_info[1]
fig.update_layout(title=event_name)
return fig
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8000)