-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2_viz_featureengineering.py
32 lines (30 loc) · 1.23 KB
/
2_viz_featureengineering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from MachineLearning.PrepareData import PrepareDataset
import pandas as pd
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import matplotlib.pyplot as plt
# Set colors for underground types
color_lookup = {'AS': 'r', 'RW': 'b', 'SC': 'y', 'WW': 'g', 'KO': 'c'}
# Set source path and call method to prepare the datatable
SOURCE_PATH = 'Data/AggregatedData/'
engineer = PrepareDataset(SOURCE_PATH, True, True, 'label', ['x', 'y', 'z'])
data_table = engineer.fill_datatable([])
print(data_table.head())
# Create 3D-scatter plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
labels = {}
# Set the features to be shown on the three axis
axis = {'x': 'x_range', 'y': 'y_range', 'z': 'z_range'}
# Scattering all data points in the prepared datatable using the defined colors
for i in data_table.index:
label = data_table.loc[i, 'label']
pt = ax.scatter(data_table.loc[i, axis['x']], data_table.loc[i, axis['y']], data_table.loc[i, axis['z']],
color=color_lookup[label])
if label not in labels:
labels[label] = pt
# Set the axis label to the chosen feature
ax.set_xlabel(axis['x'])
ax.set_ylabel(axis['y'])
ax.set_zlabel(axis['z'])
plt.legend(labels.values(), labels.keys())
plt.show()