-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
124 lines (98 loc) · 5.74 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import torch.nn as nn
import torch.nn.functional as F
class MDTA(nn.Module):
def __init__(self, channels, num_heads):
super(MDTA, self).__init__()
self.num_heads = num_heads
self.temperature = nn.Parameter(torch.ones(1, num_heads, 1, 1))
self.qkv = nn.Conv2d(channels, channels * 3, kernel_size=1, bias=False)
self.qkv_conv = nn.Conv2d(channels * 3, channels * 3, kernel_size=3, padding=1, groups=channels * 3, bias=False)
self.project_out = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
def forward(self, x):
b, c, h, w = x.shape
q, k, v = self.qkv_conv(self.qkv(x)).chunk(3, dim=1)
q = q.reshape(b, self.num_heads, -1, h * w)
k = k.reshape(b, self.num_heads, -1, h * w)
v = v.reshape(b, self.num_heads, -1, h * w)
q, k = F.normalize(q, dim=-1), F.normalize(k, dim=-1)
attn = torch.softmax(torch.matmul(q, k.transpose(-2, -1).contiguous()) * self.temperature, dim=-1)
out = self.project_out(torch.matmul(attn, v).reshape(b, -1, h, w))
return out
class GDFN(nn.Module):
def __init__(self, channels, expansion_factor):
super(GDFN, self).__init__()
hidden_channels = int(channels * expansion_factor)
self.project_in = nn.Conv2d(channels, hidden_channels * 2, kernel_size=1, bias=False)
self.conv = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, kernel_size=3, padding=1,
groups=hidden_channels * 2, bias=False)
self.project_out = nn.Conv2d(hidden_channels, channels, kernel_size=1, bias=False)
def forward(self, x):
x1, x2 = self.conv(self.project_in(x)).chunk(2, dim=1)
x = self.project_out(F.gelu(x1) * x2)
return x
class TransformerBlock(nn.Module):
def __init__(self, channels, num_heads, expansion_factor):
super(TransformerBlock, self).__init__()
self.norm1 = nn.LayerNorm(channels)
self.attn = MDTA(channels, num_heads)
self.norm2 = nn.LayerNorm(channels)
self.ffn = GDFN(channels, expansion_factor)
def forward(self, x):
b, c, h, w = x.shape
x = x + self.attn(self.norm1(x.reshape(b, c, -1).transpose(-2, -1).contiguous()).transpose(-2, -1)
.contiguous().reshape(b, c, h, w))
x = x + self.ffn(self.norm2(x.reshape(b, c, -1).transpose(-2, -1).contiguous()).transpose(-2, -1)
.contiguous().reshape(b, c, h, w))
return x
class DownSample(nn.Module):
def __init__(self, channels):
super(DownSample, self).__init__()
self.body = nn.Sequential(nn.Conv2d(channels, channels // 2, kernel_size=3, padding=1, bias=False),
nn.PixelUnshuffle(2))
def forward(self, x):
return self.body(x)
class UpSample(nn.Module):
def __init__(self, channels):
super(UpSample, self).__init__()
self.body = nn.Sequential(nn.Conv2d(channels, channels * 2, kernel_size=3, padding=1, bias=False),
nn.PixelShuffle(2))
def forward(self, x):
return self.body(x)
class Restormer(nn.Module):
def __init__(self, num_blocks=[4, 6, 6, 8], num_heads=[1, 2, 4, 8], channels=[48, 96, 192, 384], num_refinement=4,
expansion_factor=2.66):
super(Restormer, self).__init__()
self.embed_conv = nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False)
self.encoders = nn.ModuleList([nn.Sequential(*[TransformerBlock(
num_ch, num_ah, expansion_factor) for _ in range(num_tb)]) for num_tb, num_ah, num_ch in
zip(num_blocks, num_heads, channels)])
# the number of down sample or up sample == the number of encoder - 1
self.downs = nn.ModuleList([DownSample(num_ch) for num_ch in channels[:-1]])
self.ups = nn.ModuleList([UpSample(num_ch) for num_ch in list(reversed(channels))[:-1]])
# the number of reduce block == the number of decoder - 1
self.reduces = nn.ModuleList([nn.Conv2d(channels[i], channels[i - 1], kernel_size=1, bias=False)
for i in reversed(range(2, len(channels)))])
# the number of decoder == the number of encoder - 1
self.decoders = nn.ModuleList([nn.Sequential(*[TransformerBlock(channels[2], num_heads[2], expansion_factor)
for _ in range(num_blocks[2])])])
self.decoders.append(nn.Sequential(*[TransformerBlock(channels[1], num_heads[1], expansion_factor)
for _ in range(num_blocks[1])]))
# the channel of last one is not change
self.decoders.append(nn.Sequential(*[TransformerBlock(channels[1], num_heads[0], expansion_factor)
for _ in range(num_blocks[0])]))
self.refinement = nn.Sequential(*[TransformerBlock(channels[1], num_heads[0], expansion_factor)
for _ in range(num_refinement)])
self.output = nn.Conv2d(channels[1], 3, kernel_size=3, padding=1, bias=False)
def forward(self, x):
fo = self.embed_conv(x)
out_enc1 = self.encoders[0](fo)
out_enc2 = self.encoders[1](self.downs[0](out_enc1))
out_enc3 = self.encoders[2](self.downs[1](out_enc2))
out_enc4 = self.encoders[3](self.downs[2](out_enc3))
out_dec3 = self.decoders[0](self.reduces[0](torch.cat([self.ups[0](out_enc4), out_enc3], dim=1)))
out_dec2 = self.decoders[1](self.reduces[1](torch.cat([self.ups[1](out_dec3), out_enc2], dim=1)))
fd = self.decoders[2](torch.cat([self.ups[2](out_dec2), out_enc1], dim=1))
fr = self.refinement(fd)
out = self.output(fr) + x
return out