-
Notifications
You must be signed in to change notification settings - Fork 15
/
generate_json.py
151 lines (125 loc) · 4.68 KB
/
generate_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import json
import os
from io import StringIO
import mistletoe
import pandas as pd
from bs4 import BeautifulSoup
from github import Github
from get_bundle_id import get_single_bundle_id
def transform_object(original_object):
transformed_object = {**original_object, "apps": None}
app_map = {}
for app in original_object["apps"]:
(
name,
bundle_identifier,
version,
version_date,
size,
download_url,
developer_name,
localized_description,
icon_url,
) = (
app["name"],
app["bundleIdentifier"],
app["version"],
app["versionDate"],
app["size"],
app["downloadURL"],
app["developerName"],
app["localizedDescription"],
app["iconURL"],
)
if name not in app_map:
app_map[name] = {
"name": name,
"bundleIdentifier": bundle_identifier,
"developerName": developer_name,
"iconURL": icon_url,
"versions": [],
}
app_map[name]["versions"].append(
{
"version": version,
"date": version_date,
"size": size,
"downloadURL": download_url,
"localizedDescription": localized_description,
}
)
for name, app_info in app_map.items():
app_info["versions"].sort(key=lambda x: x["date"], reverse=True)
transformed_object["apps"] = list(app_map.values())
return transformed_object
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--token", help="Github token")
args = parser.parse_args()
token = args.token
with open("apps.json", "r") as f:
data = json.load(f)
if os.path.exists("bundleId.csv"):
df = pd.read_csv("bundleId.csv")
else:
df = pd.DataFrame(columns=["name", "bundleId"])
md_df = None
if os.path.exists("README.md"):
with open("README.md", "r", encoding="utf-8") as f:
raw_md = f.read()
html = mistletoe.markdown(raw_md)
soup = BeautifulSoup(html, "html.parser")
table = soup.find_all("table")[1]
md_df = pd.read_html(StringIO(str(table)), keep_default_na=False)[0]
md_df["App Name"] = md_df["App Name"].str.replace(" ", "").str.lower()
# clear apps
data["apps"] = []
g = Github(token)
repo = g.get_repo("Neoncat-OG/TrollStore-IPAs")
releases = repo.get_releases()
for release in releases:
print(release.title)
for asset in release.get_assets():
if asset.name[-3:] != "ipa":
continue
name = asset.name[:-4]
date = asset.created_at.strftime("%Y-%m-%d")
try:
app_name, version = name.split("-", 1)
except:
app_name = name
version = "1.0"
if app_name in df.name.values:
bundle_id = str(df[df.name == app_name].bundleId.values[0])
else:
bundle_id = get_single_bundle_id(asset.browser_download_url)
df = pd.concat([df, pd.DataFrame({"name": [app_name], "bundleId": [bundle_id]})], ignore_index=True)
desc = ""
dev_name = ""
if md_df is not None:
row = md_df.loc[md_df["App Name"] == app_name.replace(" ", "").lower()]
if len(row.values):
raw_desc = row["Description"].values[0]
raw_last_updated = row["Last Updated"].values[0]
raw_status = row["Status"].values[0]
desc = f"{raw_desc}\nLast updated: {raw_last_updated}\nStatus: {raw_status}"
dev_name = f"{row['Source/Maintainer'].values[0]}"
data["apps"].append(
{
"name": app_name,
"bundleIdentifier": bundle_id,
"version": version,
"versionDate": date,
"size": asset.size,
"downloadURL": asset.browser_download_url,
"developerName": dev_name,
"localizedDescription": desc,
"iconURL": f"https://raw.githubusercontent.com/Neoncat-OG/TrollStore-IPAs/main/icons/{bundle_id}.png",
}
)
df.to_csv("bundleId.csv", index=False)
with open("apps_esign.json", "w") as json_file:
json.dump(data, json_file, indent=2)
with open("apps.json", "w") as file:
json.dump(transform_object(data), file, indent=2)