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Key exchange from hard homogeneous spaces

Let G be an abelian group acting on a set X with some given
point x0. If the action is

easy to compute (polynomial time),

hard to invert (exponential time),

then there is an analogue of the Diffie–Hellman key exchange
(Couveignes 2006).

(ab) ? x0

a ? x0 b ? x0

x0

shared secret

public

b a

a b
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The Couveignes–Rostovtsev–Stolbunov scheme

Question

Where can we find such an action?

Answer (Couveignes 2006, Rostovtsev–Stolbunov 2006)

Use the action of a class group on a set of isogenous elliptic
curves.

Goals

Explain what this means

Describe the computations needed

Discuss our EllipticCurves module in Nemo.
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Elliptic curves over k

Elliptic curves over a field k are algebraic curves, e.g.

E : y 2 = x3 + ax + b.

They have an abelian group structure. The j-invariant

j(E ) = 1728
4a3

4a3 + 27b2

classifies such curves up to isomorphism.

Isogenies are nonzero morphisms. Our isogenies will be
defined over k . If an isogeny is given by rational fractions
of degree `, it is called an `-isogeny.
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Complex multiplication

From now on, k = Fp is a prime finite field.
Let E/Fp be an ordinary elliptic curve.

The ring End(E ) is isomorphic to an order in a quadratic
number field. The Frobenius endomorphism is a
distinguished element in End(E ).

Ideals of O modulo principal ideals form the class group
of O.

Isogenies of degree ` starting from E correspond to ideals in O
of norm `.
For example, in the generic case, there are either zero or two
isogenies of degree ` with domain E .
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Action of the class group

Proposition

There is an action of the class group on a set of elliptic
curves.

Ideals of norm ` act as `-isogenies.

This action is simply transitive.

Therefore, in our setting, isogeny graphs are just Cayley
graphs of a certain group.



Motivation An example in isogeny-based cryptography The EllipticCurves module Conclusion

Our isogeny graphs

Isogeny graph over F173 with isogenies of degree 3 (blue) and
7 (red):

2

162
36

117

134

116
167

This graph is much larger for cryptographic uses.
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Representing isogenies

Let E/k be an elliptic curve, and ` 6= p be an odd prime.
Giving the following is equivalent:

An isogeny E → E ′ of degree `

Its kernel, which is a cyclic subgroup of E of order `

A polynomial of degree `−1
2

in x defining the kernel.

If we know this kernel polynomial, we can easily find E ′ using
Vélu’s formulas.
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Representing ideals

We do not compute directly in the class group. Instead, we
use the following representation of ideals:

If the ideal l has norm `, we have a natural surjection

O/`O → O/lO ' Z/`Z.

The ideal ` is determined by the tuple (`, v), where v is the
image of the Frobenius under this surjection. We call v a
Frobenius eigenvalue.
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General algorithm

Problem

Given E/Fp and a prime `, how can we compute the action of
an ideal (`, v) on E ?

Idea

The j-invariant we want is one of the two roots of a polynomial
equation, called modular equation: Φ`(j(E ),Y ) = 0.

Algorithm

Let E be a curve and (`, v) be an ideal.

compute and solve this equation: find j1, j2

compute the kernel polynomial K (x) of E → j1

check if the Frobenius acts on it as scalar mult. by v :

(xp, yp)
?
= [v ] · (x , y) mod K (x) and curve equation.
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Kernel computation

Question

How can we compute the kernel polynomial K (x) of
φ : E → j1 ?

Idea (Elkies)

The rational fraction defining φ satisfies a simple differential
equation. K (x) appears as the denominator.

Algorithm (Bostan–Morain–Salvy–Schost 2008)

Compute power series solutions of this ODE up to a
certain precision with a Newton iteration

Recover K (x) using the Berlekamp–Massey rational
reconstruction algorithm.
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Using Vélu’s formulas

Problem

Given E/Fp and a prime ` 6= p, how can we compute the
curves linked to E by an `-isogeny?

Finding roots of modular polynomials is costly : Φ`(X ,Y ) has
degree ` + 1 in both variables.

Another solution

Suppose that K is a subgroup of order ` in E whose points are
defined over Fp.

Look for `-torsion points over Fp to find K , using scalar
multiplications

Compute the curve E/K using Vélu’s formulas.

The isogeny E → E/K has degree `.
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Using Vélu’s formulas (2)

The previous condition may be relaxed when allowing field
extensions. But. . .

Using Vélu’s formulas is only efficient with small-degree
extensions.

Using efficient arithmetic on curves is important (use
other models than Weierstrass equations)

Not every curve satisfies the previous conditions for many
`’s and small d ’s: we have to look for adequate curves.

In practice, we have to use both the general algorithm
and Vélu’s formulas.
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and Vélu’s formulas.



Motivation An example in isogeny-based cryptography The EllipticCurves module Conclusion
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What we would like to do

For the general method:

Define elliptic curves over finite fields and general rings

Define isogenies, scalar multiplication and isomorphisms

Have a database of modular polynomials

Find roots of polynomials over finite fields

BMSS: ODEs in power series with Newton iterations and
Berlekamp–Massey.

For Vélu’s formulas:

Define points on elliptic curves and arithmetic operations
with efficient models

Extensions of finite fields.
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Three ways to compute scalar multiplications

Sol. 1 (Nemo)
E = Weierstrass(...)

Fext, = FiniteField(p, d, "alpha")

Eext = base extend(E, Fext)

P = rand(Eext)

pˆd * P

Sol. 2 (Nemo)
E = Montgomery(...)

Fext, = FiniteField(p, d, "alpha")

Eext = base extend(E, Fext)

P = randXonly(Eext)

pˆd * P

Sol. 3 (Sage)
E = EllipticCurve(...)

Fext = FiniteField(p**d, "alpha")

Eext = E.base extend(Fext)

P = Eext.random element()

C = p**d

C * P
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Timing results
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Further possible development

Around the previous algorithms:

Call (system) PARI to compute the cardinality of curves
over finite fields

Have access to FLINT’s root finding algorithms modulo p

Have a decent system to handle field extensions

Have p-adic numbers to compute isogenies in small
characteristic?

Connections with Hecke to be able to compute in
endomorphism rings?



Motivation An example in isogeny-based cryptography The EllipticCurves module Conclusion

Further possible development

This module may also become useful to people learning about
elliptic curves and elliptic curve cryptography:

Implement other models for curves

Add pairings

. . .
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Conclusion

We implemented Couveigne’s proposal, but the heavy
computations needed makes it uncompetitive in practive
when compared with other cryptosystems.

In order to use Vélu’s formulas, we have to look for
adequate curves, and this requires lots of computational
power.

With the best curve we found so far, aiming at 128-bit
security, we reduced the computing time from 880 to 360
seconds. Better curves would bring further improvement.

The EllipticCurves module is able to perform these
computations.
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In order to use Vélu’s formulas, we have to look for
adequate curves, and this requires lots of computational
power.

With the best curve we found so far, aiming at 128-bit
security, we reduced the computing time from 880 to 360
seconds. Better curves would bring further improvement.

The EllipticCurves module is able to perform these
computations.



Motivation An example in isogeny-based cryptography The EllipticCurves module Conclusion

Conclusion

We implemented Couveigne’s proposal, but the heavy
computations needed makes it uncompetitive in practive
when compared with other cryptosystems.
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Thank you!
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