-
Notifications
You must be signed in to change notification settings - Fork 287
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Terrible results on inference #367
Comments
You specified In short, your dataset doesn't contain a single object of class You can also see it in the loss value. If the loss immediately drops under
|
Hey @mintar thanks your help. On the test images it only detects (2/4) objects (1 really hidden) and the points are not very accurate. As for the training loss, it does no seem no get down:
Is this the training behavior I should expect? Thanks, Joan |
"Local Rank" is only relevant if you're training on multiple GPUs in parallel. The loss doesn't look too good, looks like nothing much is happening. What do the belief maps look like? |
Hey @mintar, And guess: Are they weird? I got there from here in train.py: Thanks, Joan |
Yes. The images are normalized, so "all grey" means "all black" (there are no bright peaks in the image). There should be bright spots similar to the ground truth. In other words, training is still not working. |
Hey @mintar. My data looks like this: Are the points in the order they should be? Also for mustard objects I am assuming that the measurements in https://github.com/NVlabs/Deep_Object_Pose/blob/master/config/config_pose.yaml are right. Should they change depending on the scale I give to the object on the syntethic data or it's only important for real size? "mustard": [9.6024150848388672,19.130100250244141,5.824894905090332] Thanks, Joan |
There are multiple steps:
In your case, we know that step 2 already produces garbage belief maps, so we don't need to worry about step 3 for now. The object dimensions, order of points and camera intrinsics are not necessary in step 2 yet. The only input so far are the ground truth belief maps, and they look fine. I would guess you still have not trained on the correct object. Did you retrain with |
Hey.
Well I prefered changing the json instead of runing on YOLO so my .json not look like:
What could I check to see if I have done it right? Here is my training command:
Thanks Joan |
You could show your belief maps again and check whether they have clear peaks. |
Got the same problem the train dont look to work . I download the dataset for canned meat that NVSII provide for test and see if i get any changes.. they have a 60.000 imagens dataset to test, did you try using train or train2 version? |
There have been quite a few changes to the repo recently, some of which broke stuff. Maybe it's worth checking out an older version. |
I am using the current Do you know which version was 100% working well? @mintar Thanks Joan |
|
Start testing with train2 .. i just had to change 2 things : line 140 #parser.add_argument("--local_rank", type=int) and line 259 transform.Scale to transform.Resize ... We shall see how it goes... Fingers crossed |
Same here, the loss does not seem to be getting down... |
@nv-jeff did you test your changes to make sure the training script worked correctly? Following this thread I would think they broke a few things. I would recommend using the dope repo before @nv-jeff changes, using nvisii to generate data and training with these scripts. Sorry about this to @joansaurina and @RenanMoreiraPinto |
Could you point us to the correct version? @TontonTremblay And yeah i'll try to change blenderoc for nvisii |
It seems I cannot use nvisii due to my nvdia drivers... |
so sorry! what error are you getting? |
To use the nvsii I had to downgrade the nvidia drivers to 450 and use the
ubuntu 20.04, but didn't go well at middle of image creation the pc
shutdown..
I using only 2 gpu for train so take longer to get results.. testing the
train2 atm. I using the shiny meat dataset..
Em sáb., 22 de jun. de 2024, 14:49, Jonathan Tremblay <
***@***.***> escreveu:
… so sorry! what error are you getting?
—
Reply to this email directly, view it on GitHub
<#367 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AIEWK2GJOUQVXDYHYEGU4DLZIW2LHAVCNFSM6AAAAABJGFMR6GVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDCOBUGEZDONRXGA>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
Are these results with data generated with nvsii and this version of the code https://github.com/NVlabs/Deep_Object_Pose/tree/128631a23c827d2091cfd103c03c8c3a93fc6134 ? Could you describe how did you generate the data with nvsii? The drivers and version you mentioned? And which objects are you training on? If you are interested we could share the dataset we create (I want 20 YCB objects) Thanks; Joan |
Hey @TontonTremblay Do you think with blendeproc with more images the training could go well? Also the json on the meat can dataset you have available (done with nvsii) have more things than the json blenderroc generates: Meat can json:
And the ones generated with blendeproc:
Is it important to have local cuboid, location and location world? Thanks Joan |
The older, NVisii data generation code produced a number of fields that were used for experiments and debugging. The newer blenderproc data generation code only emits the required fields with one exception: it also generates the debugging/visualization values: 'location' and 'quaternion_xyzw', which describe the position and orientation of the object in the camera coordinate system. The data generated for each object is described at lines 278-287 of |
hi! I used the blenderproc version 20.000 imagens dataset and my own blender .obj of a door :p ......... i used the new train2 version i will try the old version i making imagens on nvsii but since i had to make a downgrade to the nvidia 450 i used a old computer... i will try the new version with 60.000 dataset. |
" --path_single_obj /home/renan/Deep_Object_Pose/data_generation/nvisii_data_gen/models/door/door.obj" i comment this 2 while training python3 single_video_pybullet.py $args ubuntu 20.04 |
I am finally getting decent results! I think I had these problems:
I'll report when training is done with inference results, but my loss does look good now:
Thanks; Joan |
Hello there, Just some quick questions @joansaurina, in this new training you performed. Are you training using train.py or train2, in the version you are using? And were you able to perform inference? There is not a lot of documentation in that version, so not sure if it is possible. Thanks for the help |
I am investigating the differences in training with the older training code (in |
Hey @phsilvarepo I used train2. Yes I am performing inference! Feel free to ask mor questions Joan |
I've done code comparisons and several experiments and I believe I have found the source of the quality discrepancies between the original training code ( Specifically, the old dataloader -- in I have run comparisons of the fixed old code and the new code on a single machine with a single GPU, having set the random seed to 1 and setting the number of worker threads to one in order to eliminate randomness in data loading. The loss decrease is identical to four decimal places (at the end of one epoch) and the results are equivalent. There are some small differences (less than a pixel) in cuboid point location but I believe this is the result of slight differences in math resulting from refactoring. I will make the code change to eliminate the double-loading issue, but will not close this issue for now. If any of you (awesome! beautiful! thoughtful!) users find any continuing differences, please let us know immediately and I will work with you to determine the problem. |
Hello there, |
No. It does not work well. @phsilvarepo |
Hey.
In order to undesrtand how DOPE works I did my first training with and YCB object which was already trained by the authors with the weights available.
I generated my data using blenderproc_data_gen:
https://github.com/NVlabs/Deep_Object_Pose/tree/master/data_generation/blenderproc_data_gen
I used this command:
python ../Deep_Object_Pose/data_generation/blenderproc_data_gen/run_blenderproc_datagen.py --nb_runs 1 --nb_frames 1250 --path_single_obj /joansaurina_working_dir/DOPE/objects/YOLO/006_mustard_bottle/006_mustard_bottle.obj --nb_objects 5 --distractors_folder /joansaurina_working_dir/DOPE/objects/distractors --nb_distractors 10 --backgrounds_folder /joansaurina_working_dir/DOPE/hdr_maps --outf /joansaurina_working_dir/DOPE/data --width 1920 --height 1080 --nb_workers 4 --run_id 0 --focal-length 1400 --scale 45
With the 2000 hdri background you suggested me, 19 different distractors, 5 times my object on each generated frame.
I run this command 16 times to have 20.000 frames.
Here you can see an example:
Image:
JSON:
I then proceed to train:
python -m torch.distributed.run ./Deep_Object_Pose/train/train.py --data /joansaurina_working_dir/DOPE/data/mustard/train --object mustard --namefile mustard --gpuids 2 --outf /joansaurina_working_dir/DOPE/outputs
I get this loss values:
Train Epoch: 1 [0/21954 (0%)] Loss: 0.032226417213678 Local Rank: 0
Train Epoch: 1 [3200/21954 (15%)] Loss: 0.000054956450185 Local Rank: 0
Train Epoch: 1 [6400/21954 (29%)] Loss: 0.000005583947768 Local Rank: 0
Train Epoch: 1 [9600/21954 (44%)] Loss: 0.000002404336783 Local Rank: 0
Train Epoch: 1 [12800/21954 (58%)] Loss: 0.000001227574558 Local Rank: 0
Train Epoch: 1 [16000/21954 (73%)] Loss: 0.000000854489485 Local Rank: 0
Train Epoch: 1 [19200/21954 (87%)] Loss: 0.000000541734153 Local Rank: 0
Train Epoch: 2 [0/21954 (0%)] Loss: 0.000000461598574 Local Rank: 0
Train Epoch: 2 [3200/21954 (15%)] Loss: 0.000000814163343 Local Rank: 0
Train Epoch: 2 [6400/21954 (29%)] Loss: 0.000001324953246 Local Rank: 0
Train Epoch: 2 [9600/21954 (44%)] Loss: 0.000000222948032 Local Rank: 0
Train Epoch: 2 [12800/21954 (58%)] Loss: 0.000000372285456 Local Rank: 0
Train Epoch: 2 [16000/21954 (73%)] Loss: 0.000000558363013 Local Rank: 0
Train Epoch: 2 [19200/21954 (87%)] Loss: 0.000000236218071 Local Rank: 0
Train Epoch: 3 [0/21954 (0%)] Loss: 0.000001860549105 Local Rank: 0
Train Epoch: 3 [3200/21954 (15%)] Loss: 0.000000799212899 Local Rank: 0
Train Epoch: 3 [6400/21954 (29%)] Loss: 0.000000125715403 Local Rank: 0
Train Epoch: 3 [9600/21954 (44%)] Loss: 0.000000180747477 Local Rank: 0
Train Epoch: 3 [12800/21954 (58%)] Loss: 0.000000805953277 Local Rank: 0
Train Epoch: 3 [16000/21954 (73%)] Loss: 0.000001442992357 Local Rank: 0
Train Epoch: 3 [19200/21954 (87%)] Loss: 0.000001061197509 Local Rank: 0
Train Epoch: 4 [0/21954 (0%)] Loss: 0.000000982815891 Local Rank: 0
Train Epoch: 4 [3200/21954 (15%)] Loss: 0.000000206120603 Local Rank: 0
Train Epoch: 4 [6400/21954 (29%)] Loss: 0.000000127674738 Local Rank: 0
Train Epoch: 4 [9600/21954 (44%)] Loss: 0.000007593555438 Local Rank: 0
Train Epoch: 4 [12800/21954 (58%)] Loss: 0.000000755591827 Local Rank: 0
Train Epoch: 4 [16000/21954 (73%)] Loss: 0.000000437721752 Local Rank: 0
Train Epoch: 4 [19200/21954 (87%)] Loss: 0.000000293232802 Local Rank: 0
Train Epoch: 5 [0/21954 (0%)] Loss: 0.000000230907332 Local Rank: 0
Train Epoch: 5 [3200/21954 (15%)] Loss: 0.000000182625854 Local Rank: 0
Train Epoch: 5 [6400/21954 (29%)] Loss: 0.000000148762140 Local Rank: 0
Train Epoch: 5 [9600/21954 (44%)] Loss: 0.000000122769222 Local Rank: 0
Train Epoch: 5 [12800/21954 (58%)] Loss: 0.000000107598140 Local Rank: 0
Train Epoch: 5 [16000/21954 (73%)] Loss: 0.000000093323258 Local Rank: 0
Train Epoch: 5 [19200/21954 (87%)] Loss: 0.000000082392404 Local Rank: 0
Train Epoch: 6 [0/21954 (0%)] Loss: 0.000000075647705 Local Rank: 0
Train Epoch: 6 [3200/21954 (15%)] Loss: 0.000000064887971 Local Rank: 0
Train Epoch: 6 [6400/21954 (29%)] Loss: 0.000000060798961 Local Rank: 0
Train Epoch: 6 [9600/21954 (44%)] Loss: 0.000000054425744 Local Rank: 0
Train Epoch: 6 [12800/21954 (58%)] Loss: 0.000000050276164 Local Rank: 0
Train Epoch: 6 [16000/21954 (73%)] Loss: 0.000000046842217 Local Rank: 0
Train Epoch: 6 [19200/21954 (87%)] Loss: 0.000000041724803 Local Rank: 0
Train Epoch: 7 [0/21954 (0%)] Loss: 0.000000040864649 Local Rank: 0
Train Epoch: 7 [3200/21954 (15%)] Loss: 0.000000037598987 Local Rank: 0
Train Epoch: 7 [6400/21954 (29%)] Loss: 0.000000041400455 Local Rank: 0
Train Epoch: 7 [9600/21954 (44%)] Loss: 0.000000036804060 Local Rank: 0
Train Epoch: 7 [12800/21954 (58%)] Loss: 0.000000030431892 Local Rank: 0
Train Epoch: 7 [16000/21954 (73%)] Loss: 0.000000033451677 Local Rank: 0
Train Epoch: 7 [19200/21954 (87%)] Loss: 0.000000038179891 Local Rank: 0
Train Epoch: 8 [0/21954 (0%)] Loss: 0.000000137247866 Local Rank: 0
Train Epoch: 8 [3200/21954 (15%)] Loss: 0.000000024037080 Local Rank: 0
Train Epoch: 8 [6400/21954 (29%)] Loss: 0.000000040983824 Local Rank: 0
Train Epoch: 8 [9600/21954 (44%)] Loss: 0.000000023996826 Local Rank: 0
Train Epoch: 8 [12800/21954 (58%)] Loss: 0.000000025145226 Local Rank: 0
Train Epoch: 8 [16000/21954 (73%)] Loss: 0.000000057790899 Local Rank: 0
Train Epoch: 8 [19200/21954 (87%)] Loss: 0.000000078414146 Local Rank: 0
Train Epoch: 9 [0/21954 (0%)] Loss: 0.000000022625041 Local Rank: 0
Train Epoch: 9 [3200/21954 (15%)] Loss: 0.000000614076896 Local Rank: 0
Train Epoch: 9 [6400/21954 (29%)] Loss: 0.000000046579181 Local Rank: 0
Train Epoch: 9 [9600/21954 (44%)] Loss: 0.000000060488205 Local Rank: 0
Train Epoch: 9 [12800/21954 (58%)] Loss: 0.000000481881898 Local Rank: 0
Train Epoch: 9 [16000/21954 (73%)] Loss: 0.000000044869907 Local Rank: 0
Train Epoch: 9 [19200/21954 (87%)] Loss: 0.000000022641267 Local Rank: 0
Train Epoch: 10 [0/21954 (0%)] Loss: 0.000000040946539 Local Rank: 0
Train Epoch: 10 [3200/21954 (15%)] Loss: 0.000000019352248 Local Rank: 0
Train Epoch: 10 [6400/21954 (29%)] Loss: 0.000000093074377 Local Rank: 0
Train Epoch: 10 [9600/21954 (44%)] Loss: 0.000000191221389 Local Rank: 0
Train Epoch: 10 [12800/21954 (58%)] Loss: 0.000000054558832 Local Rank: 0
Train Epoch: 10 [16000/21954 (73%)] Loss: 0.000000014376070 Local Rank: 0
Train Epoch: 10 [19200/21954 (87%)] Loss: 0.000000157801111 Local Rank: 0
Train Epoch: 11 [0/21954 (0%)] Loss: 0.000000021281508 Local Rank: 0
Train Epoch: 11 [3200/21954 (15%)] Loss: 0.000000104082659 Local Rank: 0
Train Epoch: 11 [6400/21954 (29%)] Loss: 0.000000019813221 Local Rank: 0
Train Epoch: 11 [9600/21954 (44%)] Loss: 0.000000033571567 Local Rank: 0
Train Epoch: 11 [12800/21954 (58%)] Loss: 0.000000018261460 Local Rank: 0
Train Epoch: 11 [16000/21954 (73%)] Loss: 0.000000010644818 Local Rank: 0
Train Epoch: 11 [19200/21954 (87%)] Loss: 0.000000016095139 Local Rank: 0
Train Epoch: 12 [0/21954 (0%)] Loss: 0.000000011582900 Local Rank: 0
Train Epoch: 12 [3200/21954 (15%)] Loss: 0.000000432212261 Local Rank: 0
Train Epoch: 12 [6400/21954 (29%)] Loss: 0.000000479986852 Local Rank: 0
Train Epoch: 12 [9600/21954 (44%)] Loss: 0.000001059239480 Local Rank: 0
Train Epoch: 12 [12800/21954 (58%)] Loss: 0.000000036008135 Local Rank: 0
Train Epoch: 12 [16000/21954 (73%)] Loss: 0.000000030287978 Local Rank: 0
Train Epoch: 12 [19200/21954 (87%)] Loss: 0.000000200769165 Local Rank: 0
Train Epoch: 13 [0/21954 (0%)] Loss: 0.000000947358330 Local Rank: 0
Train Epoch: 13 [3200/21954 (15%)] Loss: 0.000000174554174 Local Rank: 0
Train Epoch: 13 [6400/21954 (29%)] Loss: 0.000000019825865 Local Rank: 0
Train Epoch: 13 [9600/21954 (44%)] Loss: 0.000000457419105 Local Rank: 0
Train Epoch: 13 [12800/21954 (58%)] Loss: 0.000000013466329 Local Rank: 0
Train Epoch: 13 [16000/21954 (73%)] Loss: 0.000000009109310 Local Rank: 0
Train Epoch: 13 [19200/21954 (87%)] Loss: 0.000000029324962 Local Rank: 0
Train Epoch: 14 [0/21954 (0%)] Loss: 0.000000016672255 Local Rank: 0
Train Epoch: 14 [3200/21954 (15%)] Loss: 0.000000008403266 Local Rank: 0
Train Epoch: 14 [6400/21954 (29%)] Loss: 0.000000013834858 Local Rank: 0
Train Epoch: 14 [9600/21954 (44%)] Loss: 0.000000041245951 Local Rank: 0
Train Epoch: 14 [12800/21954 (58%)] Loss: 0.000000126654840 Local Rank: 0
Train Epoch: 14 [16000/21954 (73%)] Loss: 0.000000068792460 Local Rank: 0
Train Epoch: 14 [19200/21954 (87%)] Loss: 0.000000023356789 Local Rank: 0
Train Epoch: 15 [0/21954 (0%)] Loss: 0.000000015392022 Local Rank: 0
Train Epoch: 15 [3200/21954 (15%)] Loss: 0.000000026289984 Local Rank: 0
Train Epoch: 15 [6400/21954 (29%)] Loss: 0.000000082555040 Local Rank: 0
Train Epoch: 15 [9600/21954 (44%)] Loss: 0.000000066952595 Local Rank: 0
Train Epoch: 15 [12800/21954 (58%)] Loss: 0.000000223104365 Local Rank: 0
Train Epoch: 15 [16000/21954 (73%)] Loss: 0.000000068002940 Local Rank: 0
Train Epoch: 15 [19200/21954 (87%)] Loss: 0.000000020225711 Local Rank: 0
Train Epoch: 16 [0/21954 (0%)] Loss: 0.000000064043562 Local Rank: 0
Train Epoch: 16 [3200/21954 (15%)] Loss: 0.000000237655058 Local Rank: 0
Train Epoch: 16 [6400/21954 (29%)] Loss: 0.000000117875743 Local Rank: 0
Train Epoch: 16 [9600/21954 (44%)] Loss: 0.000000038143284 Local Rank: 0
Train Epoch: 16 [12800/21954 (58%)] Loss: 0.000000048299949 Local Rank: 0
Train Epoch: 16 [16000/21954 (73%)] Loss: 0.000000017390846 Local Rank: 0
Train Epoch: 16 [19200/21954 (87%)] Loss: 0.000000030965509 Local Rank: 0
Train Epoch: 17 [0/21954 (0%)] Loss: 0.000000114598549 Local Rank: 0
Train Epoch: 17 [3200/21954 (15%)] Loss: 0.000000777719833 Local Rank: 0
Train Epoch: 17 [6400/21954 (29%)] Loss: 0.000000008485914 Local Rank: 0
Train Epoch: 17 [9600/21954 (44%)] Loss: 0.000000020658439 Local Rank: 0
Train Epoch: 17 [12800/21954 (58%)] Loss: 0.000000051189982 Local Rank: 0
Train Epoch: 17 [16000/21954 (73%)] Loss: 0.000000059993901 Local Rank: 0
Train Epoch: 17 [19200/21954 (87%)] Loss: 0.000000087362594 Local Rank: 0
Train Epoch: 18 [0/21954 (0%)] Loss: 0.000000038836877 Local Rank: 0
Train Epoch: 18 [3200/21954 (15%)] Loss: 0.000000061083057 Local Rank: 0
Train Epoch: 18 [6400/21954 (29%)] Loss: 0.000000156934902 Local Rank: 0
Train Epoch: 18 [9600/21954 (44%)] Loss: 0.000000038107849 Local Rank: 0
Train Epoch: 18 [12800/21954 (58%)] Loss: 0.000000015710810 Local Rank: 0
Train Epoch: 18 [16000/21954 (73%)] Loss: 0.000000010882834 Local Rank: 0
Train Epoch: 18 [19200/21954 (87%)] Loss: 0.000000012338301 Local Rank: 0
Train Epoch: 19 [0/21954 (0%)] Loss: 0.000000021178728 Local Rank: 0
Train Epoch: 19 [3200/21954 (15%)] Loss: 0.000000032514269 Local Rank: 0
Train Epoch: 19 [6400/21954 (29%)] Loss: 0.000000032664754 Local Rank: 0
Train Epoch: 19 [9600/21954 (44%)] Loss: 0.000000047819096 Local Rank: 0
Train Epoch: 19 [12800/21954 (58%)] Loss: 0.000000194597476 Local Rank: 0
Train Epoch: 19 [16000/21954 (73%)] Loss: 0.000000022240888 Local Rank: 0
Train Epoch: 19 [19200/21954 (87%)] Loss: 0.000000026454614 Local Rank: 0
Train Epoch: 20 [0/21954 (0%)] Loss: 0.000000037096356 Local Rank: 0
Train Epoch: 20 [3200/21954 (15%)] Loss: 0.000000066227003 Local Rank: 0
Train Epoch: 20 [6400/21954 (29%)] Loss: 0.000000025235991 Local Rank: 0
Train Epoch: 20 [9600/21954 (44%)] Loss: 0.000000065564294 Local Rank: 0
Train Epoch: 20 [12800/21954 (58%)] Loss: 0.000000042552507 Local Rank: 0
Train Epoch: 20 [16000/21954 (73%)] Loss: 0.000000014690205 Local Rank: 0
Train Epoch: 20 [19200/21954 (87%)] Loss: 0.000000019013266 Local Rank: 0
Train Epoch: 21 [0/21954 (0%)] Loss: 0.000000015840312 Local Rank: 0
Train Epoch: 21 [3200/21954 (15%)] Loss: 0.000000007192205 Local Rank: 0
Train Epoch: 21 [6400/21954 (29%)] Loss: 0.000000080767734 Local Rank: 0
Train Epoch: 21 [9600/21954 (44%)] Loss: 0.000000019668551 Local Rank: 0
Train Epoch: 21 [12800/21954 (58%)] Loss: 0.000000012353518 Local Rank: 0
Train Epoch: 21 [16000/21954 (73%)] Loss: 0.000000014589110 Local Rank: 0
Train Epoch: 21 [19200/21954 (87%)] Loss: 0.000000008434803 Local Rank: 0
Train Epoch: 22 [0/21954 (0%)] Loss: 0.000000010440480 Local Rank: 0
Train Epoch: 22 [3200/21954 (15%)] Loss: 0.000000069318745 Local Rank: 0
Train Epoch: 22 [6400/21954 (29%)] Loss: 0.000000055334809 Local Rank: 0
Train Epoch: 22 [9600/21954 (44%)] Loss: 0.000000020559881 Local Rank: 0
Train Epoch: 22 [12800/21954 (58%)] Loss: 0.000000099122367 Local Rank: 0
Train Epoch: 22 [16000/21954 (73%)] Loss: 0.000000011309816 Local Rank: 0
Train Epoch: 22 [19200/21954 (87%)] Loss: 0.000000025341269 Local Rank: 0
Train Epoch: 23 [0/21954 (0%)] Loss: 0.000000049346887 Local Rank: 0
Train Epoch: 23 [3200/21954 (15%)] Loss: 0.000000028185640 Local Rank: 0
Train Epoch: 23 [6400/21954 (29%)] Loss: 0.000000021219892 Local Rank: 0
Train Epoch: 23 [9600/21954 (44%)] Loss: 0.000000016983169 Local Rank: 0
Train Epoch: 23 [12800/21954 (58%)] Loss: 0.000000278465279 Local Rank: 0
Train Epoch: 23 [16000/21954 (73%)] Loss: 0.000000022677003 Local Rank: 0
Train Epoch: 23 [19200/21954 (87%)] Loss: 0.000000058087821 Local Rank: 0
Train Epoch: 24 [0/21954 (0%)] Loss: 0.000000029027028 Local Rank: 0
Train Epoch: 24 [3200/21954 (15%)] Loss: 0.000000019193587 Local Rank: 0
Train Epoch: 24 [6400/21954 (29%)] Loss: 0.000000028608230 Local Rank: 0
Train Epoch: 24 [9600/21954 (44%)] Loss: 0.000000011797447 Local Rank: 0
Train Epoch: 24 [12800/21954 (58%)] Loss: 0.000000013848087 Local Rank: 0
Train Epoch: 24 [16000/21954 (73%)] Loss: 0.000000011021527 Local Rank: 0
Train Epoch: 24 [19200/21954 (87%)] Loss: 0.000000058001294 Local Rank: 0
Train Epoch: 25 [0/21954 (0%)] Loss: 0.000000010887187 Local Rank: 0
Train Epoch: 25 [3200/21954 (15%)] Loss: 0.000000012451672 Local Rank: 0
Train Epoch: 25 [6400/21954 (29%)] Loss: 0.000000014544160 Local Rank: 0
Train Epoch: 25 [9600/21954 (44%)] Loss: 0.000000016954232 Local Rank: 0
Train Epoch: 25 [12800/21954 (58%)] Loss: 0.000000024964510 Local Rank: 0
Train Epoch: 25 [16000/21954 (73%)] Loss: 0.000000010586804 Local Rank: 0
Train Epoch: 25 [19200/21954 (87%)] Loss: 0.000000053758171 Local Rank: 0
Train Epoch: 26 [0/21954 (0%)] Loss: 0.000000010967806 Local Rank: 0
Train Epoch: 26 [3200/21954 (15%)] Loss: 0.000000022923089 Local Rank: 0
Train Epoch: 26 [6400/21954 (29%)] Loss: 0.000000030484355 Local Rank: 0
Train Epoch: 26 [9600/21954 (44%)] Loss: 0.000000030351149 Local Rank: 0
Train Epoch: 26 [12800/21954 (58%)] Loss: 0.000000021354811 Local Rank: 0
Train Epoch: 26 [16000/21954 (73%)] Loss: 0.000000021473376 Local Rank: 0
Train Epoch: 26 [19200/21954 (87%)] Loss: 0.000000019664878 Local Rank: 0
Train Epoch: 27 [0/21954 (0%)] Loss: 0.000000187000595 Local Rank: 0
Train Epoch: 27 [3200/21954 (15%)] Loss: 0.000000036314706 Local Rank: 0
Train Epoch: 27 [6400/21954 (29%)] Loss: 0.000000056437692 Local Rank: 0
Train Epoch: 27 [9600/21954 (44%)] Loss: 0.000000016312969 Local Rank: 0
Train Epoch: 27 [12800/21954 (58%)] Loss: 0.000000044095511 Local Rank: 0
Train Epoch: 27 [16000/21954 (73%)] Loss: 0.000000020743155 Local Rank: 0
Train Epoch: 27 [19200/21954 (87%)] Loss: 0.000000013474663 Local Rank: 0
Train Epoch: 28 [0/21954 (0%)] Loss: 0.000000044292761 Local Rank: 0
Train Epoch: 28 [3200/21954 (15%)] Loss: 0.000000109195184 Local Rank: 0
Train Epoch: 28 [6400/21954 (29%)] Loss: 0.000000016419662 Local Rank: 0
Train Epoch: 28 [9600/21954 (44%)] Loss: 0.000000009680882 Local Rank: 0
Train Epoch: 28 [12800/21954 (58%)] Loss: 0.000000013456868 Local Rank: 0
Train Epoch: 28 [16000/21954 (73%)] Loss: 0.000000066093151 Local Rank: 0
Train Epoch: 28 [19200/21954 (87%)] Loss: 0.000000007159178 Local Rank: 0
Train Epoch: 29 [0/21954 (0%)] Loss: 0.000000025287040 Local Rank: 0
Train Epoch: 29 [3200/21954 (15%)] Loss: 0.000000011249996 Local Rank: 0
Train Epoch: 29 [6400/21954 (29%)] Loss: 0.000000029144541 Local Rank: 0
Train Epoch: 29 [9600/21954 (44%)] Loss: 0.000000030823536 Local Rank: 0
Train Epoch: 29 [12800/21954 (58%)] Loss: 0.000000013946186 Local Rank: 0
Train Epoch: 29 [16000/21954 (73%)] Loss: 0.000000091640842 Local Rank: 0
Train Epoch: 29 [19200/21954 (87%)] Loss: 0.000000019633866 Local Rank: 0
Train Epoch: 30 [0/21954 (0%)] Loss: 0.000000021500888 Local Rank: 0
Train Epoch: 30 [3200/21954 (15%)] Loss: 0.000000022184068 Local Rank: 0
Train Epoch: 30 [6400/21954 (29%)] Loss: 0.000000157694643 Local Rank: 0
Train Epoch: 30 [9600/21954 (44%)] Loss: 0.000000026855130 Local Rank: 0
Train Epoch: 30 [12800/21954 (58%)] Loss: 0.000000009808918 Local Rank: 0
Train Epoch: 30 [16000/21954 (73%)] Loss: 0.000000041021014 Local Rank: 0
Train Epoch: 30 [19200/21954 (87%)] Loss: 0.000000020091651 Local Rank: 0
Train Epoch: 31 [0/21954 (0%)] Loss: 0.000000007249267 Local Rank: 0
Train Epoch: 31 [3200/21954 (15%)] Loss: 0.000000007327598 Local Rank: 0
Train Epoch: 31 [6400/21954 (29%)] Loss: 0.000000030033306 Local Rank: 0
Train Epoch: 31 [9600/21954 (44%)] Loss: 0.000000029361036 Local Rank: 0
Train Epoch: 31 [12800/21954 (58%)] Loss: 0.000000042759485 Local Rank: 0
Train Epoch: 31 [16000/21954 (73%)] Loss: 0.000000011636001 Local Rank: 0
Train Epoch: 31 [19200/21954 (87%)] Loss: 0.000000006599022 Local Rank: 0
Train Epoch: 32 [0/21954 (0%)] Loss: 0.000000049785978 Local Rank: 0
Train Epoch: 32 [3200/21954 (15%)] Loss: 0.000000006707165 Local Rank: 0
Train Epoch: 32 [6400/21954 (29%)] Loss: 0.000000007372277 Local Rank: 0
Train Epoch: 32 [9600/21954 (44%)] Loss: 0.000000014988961 Local Rank: 0
Train Epoch: 32 [12800/21954 (58%)] Loss: 0.000000011427483 Local Rank: 0
Train Epoch: 32 [16000/21954 (73%)] Loss: 0.000000022587560 Local Rank: 0
Train Epoch: 32 [19200/21954 (87%)] Loss: 0.000000014578165 Local Rank: 0
Train Epoch: 33 [0/21954 (0%)] Loss: 0.000000015279580 Local Rank: 0
Train Epoch: 33 [3200/21954 (15%)] Loss: 0.000000004317229 Local Rank: 0
Train Epoch: 33 [6400/21954 (29%)] Loss: 0.000000031787476 Local Rank: 0
Train Epoch: 33 [9600/21954 (44%)] Loss: 0.000000005673207 Local Rank: 0
Train Epoch: 33 [12800/21954 (58%)] Loss: 0.000000017157701 Local Rank: 0
Train Epoch: 33 [16000/21954 (73%)] Loss: 0.000000006732584 Local Rank: 0
Train Epoch: 33 [19200/21954 (87%)] Loss: 0.000000016443989 Local Rank: 0
Train Epoch: 34 [0/21954 (0%)] Loss: 0.000000012904260 Local Rank: 0
Train Epoch: 34 [3200/21954 (15%)] Loss: 0.000000009646755 Local Rank: 0
Train Epoch: 34 [6400/21954 (29%)] Loss: 0.000000017857362 Local Rank: 0
Train Epoch: 34 [9600/21954 (44%)] Loss: 0.000000029539651 Local Rank: 0
Train Epoch: 34 [12800/21954 (58%)] Loss: 0.000000019424224 Local Rank: 0
Train Epoch: 34 [16000/21954 (73%)] Loss: 0.000000018462277 Local Rank: 0
Train Epoch: 34 [19200/21954 (87%)] Loss: 0.000000019469015 Local Rank: 0
Train Epoch: 35 [0/21954 (0%)] Loss: 0.000000019323245 Local Rank: 0
Train Epoch: 35 [3200/21954 (15%)] Loss: 0.000000026136629 Local Rank: 0
Train Epoch: 35 [6400/21954 (29%)] Loss: 0.000000013433817 Local Rank: 0
Train Epoch: 35 [9600/21954 (44%)] Loss: 0.000000032893745 Local Rank: 0
Train Epoch: 35 [12800/21954 (58%)] Loss: 0.000000022598265 Local Rank: 0
Train Epoch: 35 [16000/21954 (73%)] Loss: 0.000000022211307 Local Rank: 0
Train Epoch: 35 [19200/21954 (87%)] Loss: 0.000000017635895 Local Rank: 0
Train Epoch: 36 [0/21954 (0%)] Loss: 0.000000039769763 Local Rank: 0
Train Epoch: 36 [3200/21954 (15%)] Loss: 0.000000011590498 Local Rank: 0
Train Epoch: 36 [6400/21954 (29%)] Loss: 0.000000008379004 Local Rank: 0
Train Epoch: 36 [9600/21954 (44%)] Loss: 0.000000009727076 Local Rank: 0
Train Epoch: 36 [12800/21954 (58%)] Loss: 0.000000015385467 Local Rank: 0
Train Epoch: 36 [16000/21954 (73%)] Loss: 0.000000008652863 Local Rank: 0
Train Epoch: 36 [19200/21954 (87%)] Loss: 0.000000023911392 Local Rank: 0
Train Epoch: 37 [0/21954 (0%)] Loss: 0.000000010615045 Local Rank: 0
Train Epoch: 37 [3200/21954 (15%)] Loss: 0.000000018407707 Local Rank: 0
Train Epoch: 37 [6400/21954 (29%)] Loss: 0.000000018355911 Local Rank: 0
Train Epoch: 37 [9600/21954 (44%)] Loss: 0.000000010970202 Local Rank: 0
Train Epoch: 37 [12800/21954 (58%)] Loss: 0.000000019862586 Local Rank: 0
Train Epoch: 37 [16000/21954 (73%)] Loss: 0.000000013529062 Local Rank: 0
Train Epoch: 37 [19200/21954 (87%)] Loss: 0.000000013295010 Local Rank: 0
Train Epoch: 38 [0/21954 (0%)] Loss: 0.000000013958021 Local Rank: 0
Train Epoch: 38 [3200/21954 (15%)] Loss: 0.000000014583954 Local Rank: 0
Train Epoch: 38 [6400/21954 (29%)] Loss: 0.000000012989634 Local Rank: 0
Train Epoch: 38 [9600/21954 (44%)] Loss: 0.000000011866096 Local Rank: 0
Train Epoch: 38 [12800/21954 (58%)] Loss: 0.000000023150763 Local Rank: 0
Train Epoch: 38 [16000/21954 (73%)] Loss: 0.000000007781955 Local Rank: 0
Train Epoch: 38 [19200/21954 (87%)] Loss: 0.000000015456870 Local Rank: 0
Train Epoch: 39 [0/21954 (0%)] Loss: 0.000000011201415 Local Rank: 0
Train Epoch: 39 [3200/21954 (15%)] Loss: 0.000000009827847 Local Rank: 0
Train Epoch: 39 [6400/21954 (29%)] Loss: 0.000000015327053 Local Rank: 0
Train Epoch: 39 [9600/21954 (44%)] Loss: 0.000000039688686 Local Rank: 0
Train Epoch: 39 [12800/21954 (58%)] Loss: 0.000000019237461 Local Rank: 0
Train Epoch: 39 [16000/21954 (73%)] Loss: 0.000000011011694 Local Rank: 0
Train Epoch: 39 [19200/21954 (87%)] Loss: 0.000000014264638 Local Rank: 0
Train Epoch: 40 [0/21954 (0%)] Loss: 0.000000030926468 Local Rank: 0
Train Epoch: 40 [3200/21954 (15%)] Loss: 0.000000007323429 Local Rank: 0
Train Epoch: 40 [6400/21954 (29%)] Loss: 0.000000006704386 Local Rank: 0
Train Epoch: 40 [9600/21954 (44%)] Loss: 0.000000009038962 Local Rank: 0
Train Epoch: 40 [12800/21954 (58%)] Loss: 0.000000009649733 Local Rank: 0
Train Epoch: 40 [16000/21954 (73%)] Loss: 0.000000009782566 Local Rank: 0
Train Epoch: 40 [19200/21954 (87%)] Loss: 0.000000016422479 Local Rank: 0
Train Epoch: 41 [0/21954 (0%)] Loss: 0.000000019963490 Local Rank: 0
Train Epoch: 41 [3200/21954 (15%)] Loss: 0.000000009757932 Local Rank: 0
Train Epoch: 41 [6400/21954 (29%)] Loss: 0.000000010693229 Local Rank: 0
Train Epoch: 41 [9600/21954 (44%)] Loss: 0.000000027821745 Local Rank: 0
Train Epoch: 41 [12800/21954 (58%)] Loss: 0.000000007995355 Local Rank: 0
Train Epoch: 41 [16000/21954 (73%)] Loss: 0.000000008349005 Local Rank: 0
Train Epoch: 41 [19200/21954 (87%)] Loss: 0.000000005064072 Local Rank: 0
Train Epoch: 42 [0/21954 (0%)] Loss: 0.000000026273964 Local Rank: 0
Train Epoch: 42 [3200/21954 (15%)] Loss: 0.000000006836946 Local Rank: 0
Train Epoch: 42 [6400/21954 (29%)] Loss: 0.000000006001378 Local Rank: 0
Train Epoch: 42 [9600/21954 (44%)] Loss: 0.000000006310722 Local Rank: 0
Train Epoch: 42 [12800/21954 (58%)] Loss: 0.000000013901271 Local Rank: 0
Train Epoch: 42 [16000/21954 (73%)] Loss: 0.000000011100768 Local Rank: 0
Train Epoch: 42 [19200/21954 (87%)] Loss: 0.000000007251665 Local Rank: 0
Train Epoch: 43 [0/21954 (0%)] Loss: 0.000000012155632 Local Rank: 0
Train Epoch: 43 [3200/21954 (15%)] Loss: 0.000000010087867 Local Rank: 0
Train Epoch: 43 [6400/21954 (29%)] Loss: 0.000000022912102 Local Rank: 0
Train Epoch: 43 [9600/21954 (44%)] Loss: 0.000000006398962 Local Rank: 0
Train Epoch: 43 [12800/21954 (58%)] Loss: 0.000000007570744 Local Rank: 0
Train Epoch: 43 [16000/21954 (73%)] Loss: 0.000000028547678 Local Rank: 0
Train Epoch: 43 [19200/21954 (87%)] Loss: 0.000000014391338 Local Rank: 0
Train Epoch: 44 [0/21954 (0%)] Loss: 0.000000006731553 Local Rank: 0
Train Epoch: 44 [3200/21954 (15%)] Loss: 0.000000009906681 Local Rank: 0
Train Epoch: 44 [6400/21954 (29%)] Loss: 0.000000015218992 Local Rank: 0
Train Epoch: 44 [9600/21954 (44%)] Loss: 0.000000020577733 Local Rank: 0
Train Epoch: 44 [12800/21954 (58%)] Loss: 0.000000008413754 Local Rank: 0
Train Epoch: 44 [16000/21954 (73%)] Loss: 0.000000006593781 Local Rank: 0
Train Epoch: 44 [19200/21954 (87%)] Loss: 0.000000004786202 Local Rank: 0
Train Epoch: 45 [0/21954 (0%)] Loss: 0.000000005672906 Local Rank: 0
Train Epoch: 45 [3200/21954 (15%)] Loss: 0.000000008732899 Local Rank: 0
Train Epoch: 45 [6400/21954 (29%)] Loss: 0.000000013123611 Local Rank: 0
Train Epoch: 45 [9600/21954 (44%)] Loss: 0.000000028685154 Local Rank: 0
Train Epoch: 45 [12800/21954 (58%)] Loss: 0.000000017706125 Local Rank: 0
Train Epoch: 45 [16000/21954 (73%)] Loss: 0.000000027039253 Local Rank: 0
Train Epoch: 45 [19200/21954 (87%)] Loss: 0.000000009853413 Local Rank: 0
Train Epoch: 46 [0/21954 (0%)] Loss: 0.000000008321767 Local Rank: 0
Train Epoch: 46 [3200/21954 (15%)] Loss: 0.000000008611090 Local Rank: 0
Train Epoch: 46 [6400/21954 (29%)] Loss: 0.000000008987664 Local Rank: 0
Train Epoch: 46 [9600/21954 (44%)] Loss: 0.000000011627986 Local Rank: 0
Train Epoch: 46 [12800/21954 (58%)] Loss: 0.000000017624304 Local Rank: 0
Train Epoch: 46 [16000/21954 (73%)] Loss: 0.000000007787125 Local Rank: 0
Train Epoch: 46 [19200/21954 (87%)] Loss: 0.000000009117018 Local Rank: 0
Train Epoch: 47 [0/21954 (0%)] Loss: 0.000000020352275 Local Rank: 0
Train Epoch: 47 [3200/21954 (15%)] Loss: 0.000000008937186 Local Rank: 0
Train Epoch: 47 [6400/21954 (29%)] Loss: 0.000000011379610 Local Rank: 0
Train Epoch: 47 [9600/21954 (44%)] Loss: 0.000000010561430 Local Rank: 0
Train Epoch: 47 [12800/21954 (58%)] Loss: 0.000000014728766 Local Rank: 0
Train Epoch: 47 [16000/21954 (73%)] Loss: 0.000000008338232 Local Rank: 0
Train Epoch: 47 [19200/21954 (87%)] Loss: 0.000000006868773 Local Rank: 0
Train Epoch: 48 [0/21954 (0%)] Loss: 0.000000006604123 Local Rank: 0
Train Epoch: 48 [3200/21954 (15%)] Loss: 0.000000009185202 Local Rank: 0
Train Epoch: 48 [6400/21954 (29%)] Loss: 0.000000004450263 Local Rank: 0
Train Epoch: 48 [9600/21954 (44%)] Loss: 0.000000006833139 Local Rank: 0
Train Epoch: 48 [12800/21954 (58%)] Loss: 0.000000018508160 Local Rank: 0
Train Epoch: 48 [16000/21954 (73%)] Loss: 0.000000016448059 Local Rank: 0
Train Epoch: 48 [19200/21954 (87%)] Loss: 0.000000006402178 Local Rank: 0
Train Epoch: 49 [0/21954 (0%)] Loss: 0.000000008051963 Local Rank: 0
Train Epoch: 49 [3200/21954 (15%)] Loss: 0.000000013908252 Local Rank: 0
Train Epoch: 49 [6400/21954 (29%)] Loss: 0.000000008676697 Local Rank: 0
Train Epoch: 49 [9600/21954 (44%)] Loss: 0.000000009819944 Local Rank: 0
Train Epoch: 49 [12800/21954 (58%)] Loss: 0.000000007234369 Local Rank: 0
Train Epoch: 49 [16000/21954 (73%)] Loss: 0.000000041287961 Local Rank: 0
Train Epoch: 49 [19200/21954 (87%)] Loss: 0.000000005146559 Local Rank: 0
Train Epoch: 50 [0/21954 (0%)] Loss: 0.000000015207702 Local Rank: 0
Train Epoch: 50 [3200/21954 (15%)] Loss: 0.000000010120303 Local Rank: 0
Train Epoch: 50 [6400/21954 (29%)] Loss: 0.000000005482596 Local Rank: 0
Train Epoch: 50 [9600/21954 (44%)] Loss: 0.000000012620689 Local Rank: 0
Train Epoch: 50 [12800/21954 (58%)] Loss: 0.000000012743361 Local Rank: 0
Train Epoch: 50 [16000/21954 (73%)] Loss: 0.000000012274777 Local Rank: 0
Train Epoch: 50 [19200/21954 (87%)] Loss: 0.000000008007879 Local Rank: 0
Train Epoch: 51 [0/21954 (0%)] Loss: 0.000000006334987 Local Rank: 0
Train Epoch: 51 [3200/21954 (15%)] Loss: 0.000000010136299 Local Rank: 0
Train Epoch: 51 [6400/21954 (29%)] Loss: 0.000000003553023 Local Rank: 0
Train Epoch: 51 [9600/21954 (44%)] Loss: 0.000000010449689 Local Rank: 0
Train Epoch: 51 [12800/21954 (58%)] Loss: 0.000000010018343 Local Rank: 0
Train Epoch: 51 [16000/21954 (73%)] Loss: 0.000000014135829 Local Rank: 0
Train Epoch: 51 [19200/21954 (87%)] Loss: 0.000000008712250 Local Rank: 0
Train Epoch: 52 [0/21954 (0%)] Loss: 0.000000010065902 Local Rank: 0
Train Epoch: 52 [3200/21954 (15%)] Loss: 0.000000006660399 Local Rank: 0
Train Epoch: 52 [6400/21954 (29%)] Loss: 0.000000006505513 Local Rank: 0
Train Epoch: 52 [9600/21954 (44%)] Loss: 0.000000009913525 Local Rank: 0
Train Epoch: 52 [12800/21954 (58%)] Loss: 0.000000009257180 Local Rank: 0
Train Epoch: 52 [16000/21954 (73%)] Loss: 0.000000010755775 Local Rank: 0
Train Epoch: 52 [19200/21954 (87%)] Loss: 0.000000006325999 Local Rank: 0
Train Epoch: 53 [0/21954 (0%)] Loss: 0.000000035536004 Local Rank: 0
Train Epoch: 53 [3200/21954 (15%)] Loss: 0.000000021122503 Local Rank: 0
Train Epoch: 53 [6400/21954 (29%)] Loss: 0.000000007899352 Local Rank: 0
Train Epoch: 53 [9600/21954 (44%)] Loss: 0.000000007886018 Local Rank: 0
Train Epoch: 53 [12800/21954 (58%)] Loss: 0.000000007920454 Local Rank: 0
Train Epoch: 53 [16000/21954 (73%)] Loss: 0.000000014844571 Local Rank: 0
Train Epoch: 53 [19200/21954 (87%)] Loss: 0.000000008930600 Local Rank: 0
Train Epoch: 54 [0/21954 (0%)] Loss: 0.000000005660567 Local Rank: 0
Train Epoch: 54 [3200/21954 (15%)] Loss: 0.000000006730198 Local Rank: 0
Train Epoch: 54 [6400/21954 (29%)] Loss: 0.000000007977213 Local Rank: 0
Train Epoch: 54 [9600/21954 (44%)] Loss: 0.000000008456022 Local Rank: 0
Train Epoch: 54 [12800/21954 (58%)] Loss: 0.000000013306240 Local Rank: 0
Train Epoch: 54 [16000/21954 (73%)] Loss: 0.000000006157055 Local Rank: 0
Train Epoch: 54 [19200/21954 (87%)] Loss: 0.000000010907463 Local Rank: 0
Train Epoch: 55 [0/21954 (0%)] Loss: 0.000000016609061 Local Rank: 0
Train Epoch: 55 [3200/21954 (15%)] Loss: 0.000000007411313 Local Rank: 0
Train Epoch: 55 [6400/21954 (29%)] Loss: 0.000000006454592 Local Rank: 0
Train Epoch: 55 [9600/21954 (44%)] Loss: 0.000000006518717 Local Rank: 0
Train Epoch: 55 [12800/21954 (58%)] Loss: 0.000000009766346 Local Rank: 0
Train Epoch: 55 [16000/21954 (73%)] Loss: 0.000000005829686 Local Rank: 0
Train Epoch: 55 [19200/21954 (87%)] Loss: 0.000000012888748 Local Rank: 0
Train Epoch: 56 [0/21954 (0%)] Loss: 0.000000010045416 Local Rank: 0
Train Epoch: 56 [3200/21954 (15%)] Loss: 0.000000013699600 Local Rank: 0
Train Epoch: 56 [6400/21954 (29%)] Loss: 0.000000006701123 Local Rank: 0
Train Epoch: 56 [9600/21954 (44%)] Loss: 0.000000010160383 Local Rank: 0
Train Epoch: 56 [12800/21954 (58%)] Loss: 0.000000009344611 Local Rank: 0
Train Epoch: 56 [16000/21954 (73%)] Loss: 0.000000018317909 Local Rank: 0
Train Epoch: 56 [19200/21954 (87%)] Loss: 0.000000011199674 Local Rank: 0
Train Epoch: 57 [0/21954 (0%)] Loss: 0.000000010277432 Local Rank: 0
Train Epoch: 57 [3200/21954 (15%)] Loss: 0.000000012257399 Local Rank: 0
Train Epoch: 57 [6400/21954 (29%)] Loss: 0.000000007362419 Local Rank: 0
Train Epoch: 57 [9600/21954 (44%)] Loss: 0.000000011940708 Local Rank: 0
Train Epoch: 57 [12800/21954 (58%)] Loss: 0.000000005524560 Local Rank: 0
Train Epoch: 57 [16000/21954 (73%)] Loss: 0.000000006665691 Local Rank: 0
Train Epoch: 57 [19200/21954 (87%)] Loss: 0.000000013095502 Local Rank: 0
Train Epoch: 58 [0/21954 (0%)] Loss: 0.000000006900216 Local Rank: 0
Train Epoch: 58 [3200/21954 (15%)] Loss: 0.000000005206885 Local Rank: 0
Train Epoch: 58 [6400/21954 (29%)] Loss: 0.000000004738580 Local Rank: 0
Train Epoch: 58 [9600/21954 (44%)] Loss: 0.000000012049407 Local Rank: 0
Train Epoch: 58 [12800/21954 (58%)] Loss: 0.000000004357003 Local Rank: 0
Train Epoch: 58 [16000/21954 (73%)] Loss: 0.000000008204098 Local Rank: 0
Train Epoch: 58 [19200/21954 (87%)] Loss: 0.000000008960082 Local Rank: 0
Train Epoch: 59 [0/21954 (0%)] Loss: 0.000000021830797 Local Rank: 0
Train Epoch: 59 [3200/21954 (15%)] Loss: 0.000000009546346 Local Rank: 0
Train Epoch: 59 [6400/21954 (29%)] Loss: 0.000000006347834 Local Rank: 0
Train Epoch: 59 [9600/21954 (44%)] Loss: 0.000000008012685 Local Rank: 0
Train Epoch: 59 [12800/21954 (58%)] Loss: 0.000000005179124 Local Rank: 0
Train Epoch: 59 [16000/21954 (73%)] Loss: 0.000000014042721 Local Rank: 0
Train Epoch: 59 [19200/21954 (87%)] Loss: 0.000000008878821 Local Rank: 0
Train Epoch: 60 [0/21954 (0%)] Loss: 0.000000004442226 Local Rank: 0
Train Epoch: 60 [3200/21954 (15%)] Loss: 0.000000009028856 Local Rank: 0
Train Epoch: 60 [6400/21954 (29%)] Loss: 0.000000007277878 Local Rank: 0
Train Epoch: 60 [9600/21954 (44%)] Loss: 0.000000006779598 Local Rank: 0
Train Epoch: 60 [12800/21954 (58%)] Loss: 0.000000008119192 Local Rank: 0
Train Epoch: 60 [16000/21954 (73%)] Loss: 0.000000025056913 Local Rank: 0
Train Epoch: 60 [19200/21954 (87%)] Loss: 0.000000011838531 Local Rank: 0
After that, I run inference:
python ./Deep_Object_Pose/inference/inference.py --weights ./weights/mustard_60.pth --data ./weights --object mustard --exts png --outf ./weights --config config_pose.yaml --camera camera_info.yaml
And I get empty camera and non objects detected in my test images and in every image I try.
I check my belief maps and they are very bad:
In the original weights you provided I could see the following:
I would appreciate some help,
Thanks
Joan
The text was updated successfully, but these errors were encountered: