-
Notifications
You must be signed in to change notification settings - Fork 58
/
grasp_data_reader.py
805 lines (644 loc) · 32 KB
/
grasp_data_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from __future__ import print_function
from __future__ import absolute_import
import argparse
import h5py
import numpy as np
import copy
import os
import math
import time
import trimesh.transformations as tra
import json
import sample
try:
from Queue import Queue
except:
from queue import Queue
import tensorflow as tf
from online_object_renderer import OnlineObjectRendererMultiProcess, OnlineObjectRenderer
import random
import glob
class NoPositiveGraspsException(Exception):
"""raised when there's no positive grasps for an object."""
pass
def inverse_transform(trans):
"""
Computes the inverse of 4x4 transform.
"""
rot = trans[:3, :3]
t = trans[:3, 3]
rot = np.transpose(rot)
t = -np.matmul(rot, t)
output = np.zeros((4, 4), dtype=np.float32)
output[3][3] = 1
output[:3, :3] = rot
output[:3, 3] = t
return output
def distance_by_translation_grasp(p1, p2):
"""
Gets two nx4x4 numpy arrays and computes the translation of all the
grasps.
"""
t1 = p1[:, :3, 3]
t2 = p2[:, :3, 3]
return np.sqrt(np.sum(np.square(t1 - t2), axis=-1))
def distance_by_translation_point(p1, p2):
"""
Gets two nx3 points and computes the disntace between point p1 and p2.
"""
return np.sqrt(np.sum(np.square(p1 - p2), axis=-1))
def farthest_points(data, nclusters, dist_func, return_center_indexes=False, return_distances=False, verbose=False):
"""
Performs farthest point sampling on data points.
Args:
data: numpy array of the data points.
nclusters: int, number of clusters.
dist_dunc: distance function that is used to compare two data points.
return_center_indexes: bool, If True, returns the indexes of the center of
clusters.
return_distances: bool, If True, return distances of each point from centers.
Returns clusters, [centers, distances]:
clusters: numpy array containing the cluster index for each element in
data.
centers: numpy array containing the integer index of each center.
distances: numpy array of [npoints] that contains the closest distance of
each point to any of the cluster centers.
"""
if nclusters >= data.shape[0]:
if return_center_indexes:
return np.arange(data.shape[0], dtype=np.int32), np.arange(data.shape[0], dtype=np.int32)
return np.arange(data.shape[0], dtype=np.int32)
clusters = np.ones((data.shape[0],), dtype=np.int32) * -1
distances = np.ones((data.shape[0],), dtype=np.float32) * 1e7
centers = []
for iter in range(nclusters):
index = np.argmax(distances)
centers.append(index)
shape = list(data.shape)
for i in range(1, len(shape)):
shape[i] = 1
broadcasted_data = np.tile(np.expand_dims(data[index], 0), shape)
new_distances = dist_func(broadcasted_data, data)
distances = np.minimum(distances, new_distances)
clusters[distances == new_distances] = iter
if verbose:
print('farthest points max distance : {}'.format(np.max(distances)))
if return_center_indexes:
if return_distances:
return clusters, np.asarray(centers, dtype=np.int32), distances
return clusters, np.asarray(centers, dtype=np.int32)
return clusters
def regularize_pc_point_count(pc, npoints, use_farthest_point=False):
"""
If point cloud pc has less points than npoints, it oversamples.
Otherwise, it downsample the input pc to have npoint points.
use_farthest_point: indicates whether to use farthest point sampling
to downsample the points. Farthest point sampling version runs slower.
"""
if pc.shape[0] > npoints:
if use_farthest_point:
_, center_indexes = farthest_points(pc, npoints, distance_by_translation_point, return_center_indexes=True)
else:
center_indexes = np.random.choice(range(pc.shape[0]), size=npoints, replace=False)
pc = pc[center_indexes, :]
else:
required = npoints - pc.shape[0]
if required > 0:
index = np.random.choice(range(pc.shape[0]), size=required)
pc = np.concatenate((pc, pc[index, :]), axis=0)
return pc
def perturb_grasp(grasp, num, min_translation, max_translation, min_rotation, max_rotation):
"""
Self explanatory.
"""
output_grasps = []
for _ in range(num):
sampled_translation = [np.random.uniform(lb, ub) for lb, ub in zip(min_translation, max_translation)]
sampled_rotation = [np.random.uniform(lb, ub) for lb, ub in zip(min_rotation, max_rotation)]
grasp_transformation = tra.euler_matrix(*sampled_rotation)
grasp_transformation[:3, 3] = sampled_translation
output_grasps.append(np.matmul(grasp, grasp_transformation))
return output_grasps
def evaluate_grasps(grasp_tfs, obj_mesh):
"""
Check the collision of the grasps and also heuristic quality for each
grasp.
"""
collisions, _ = sample.in_collision_with_gripper(
obj_mesh,
grasp_tfs,
gripper_name='panda',
silent=True,
)
qualities = sample.grasp_quality_point_contacts(
grasp_tfs,
collisions,
object_mesh=obj_mesh,
gripper_name='panda',
silent=True,
)
return np.asarray(collisions), np.asarray(qualities)
class PointCloudReader:
def __init__(
self,
root_folder,
batch_size,
num_grasp_clusters,
npoints,
min_difference_allowed=(0, 0, 0),
max_difference_allowed=(3, 3, 0),
occlusion_nclusters=0,
occlusion_dropout_rate=0.,
caching=True,
run_in_another_process=True,
collision_hard_neg_min_translation=(-0.03,-0.03,-0.03),
collision_hard_neg_max_translation=(0.03,0.03,0.03),
collision_hard_neg_min_rotation=(-0.6,-0.2,-0.6),
collision_hard_neg_max_rotation=(+0.6,+0.2,+0.6),
collision_hard_neg_num_perturbations=10,
use_uniform_quaternions=False,
ratio_of_grasps_used=1.0,
ratio_positive=0.3,
ratio_hardnegative=0.4,
balanced_data=True,
):
self._root_folder = root_folder
self._batch_size = batch_size
self._num_grasp_clusters = num_grasp_clusters
self._max_difference_allowed = max_difference_allowed
self._min_difference_allowed = min_difference_allowed
self._npoints = npoints
self._occlusion_nclusters = occlusion_nclusters
self._occlusion_dropout_rate = occlusion_dropout_rate
self._caching = caching
self._collision_hard_neg_min_translation = collision_hard_neg_min_translation
self._collision_hard_neg_max_translation = collision_hard_neg_max_translation
self._collision_hard_neg_min_rotation = collision_hard_neg_min_rotation
self._collision_hard_neg_max_rotation = collision_hard_neg_max_rotation
self._collision_hard_neg_num_perturbations = collision_hard_neg_num_perturbations
self._collision_hard_neg_queue = {}
self._ratio_of_grasps_used = ratio_of_grasps_used
self._ratio_positive = ratio_positive
self._ratio_hardnegative = ratio_hardnegative
self._balanced_data = balanced_data
for i in range(3):
assert(collision_hard_neg_min_rotation[i] <= collision_hard_neg_max_rotation[i])
assert(collision_hard_neg_min_translation[i] <= collision_hard_neg_max_translation[i])
self._current_pc = None
self._cache = {}
if run_in_another_process:
self._renderer = OnlineObjectRendererMultiProcess(caching=True)
else:
self._renderer = OnlineObjectRenderer(caching=True)
self._renderer.start()
if use_uniform_quaternions:
quaternions = [l[:-1].split('\t') for l in open('uniform_quaternions/data2_4608.qua', 'r').readlines()]
quaternions = [[float(t[0]),
float(t[1]),
float(t[2]),
float(t[3])] for t in quaternions]
quaternions = np.asarray(quaternions)
quaternions = np.roll(quaternions, 1, axis=1)
self._all_poses = [tra.quaternion_matrix(q) for q in quaternions]
else:
self._all_poses = []
for az in np.linspace(0, np.pi * 2, 30):
for el in np.linspace(-np.pi / 2, np.pi / 2, 30):
self._all_poses.append(tra.euler_matrix(el, az, 0))
self._eval_files = [json.load(open(f)) for f in glob.glob(os.path.join(self._root_folder, 'splits', '*.json'))]
def apply_dropout(self, pc):
if self._occlusion_nclusters == 0 or self._occlusion_dropout_rate == 0.:
return np.copy(pc)
labels = farthest_points(pc, self._occlusion_nclusters, distance_by_translation_point)
removed_labels = np.unique(labels)
removed_labels = removed_labels[np.random.rand(removed_labels.shape[0]) < self._occlusion_dropout_rate]
if removed_labels.shape[0] == 0:
return np.copy(pc)
mask = np.ones(labels.shape, labels.dtype)
for l in removed_labels:
mask = np.logical_and(mask, labels != l)
return pc[mask]
def render_random_scene(self, camera_pose=None):
"""
Renders a random view and return (pc, camera_pose, object_pose).
object_pose is None for single object per scene.
"""
if camera_pose is None:
viewing_index = np.random.randint(0, high=len(self._all_poses))
camera_pose = self._all_poses[viewing_index]
in_camera_pose = copy.deepcopy(camera_pose)
_, _, pc, camera_pose = self._renderer.render(in_camera_pose)
pc = self.apply_dropout(pc)
pc = regularize_pc_point_count(pc, self._npoints)
pc_mean = np.mean(pc, 0, keepdims=True)
pc[:, :3] -= pc_mean[:, :3]
camera_pose[:3, 3] -= pc_mean[0, :3]
return pc, camera_pose, in_camera_pose
def change_object(self, cad_path, cad_scale):
self._renderer.change_object(cad_path, cad_scale)
def get_evaluator_data(self, grasp_path, verify_grasps=False):
if self._balanced_data:
return self._get_uniform_evaluator_data(grasp_path, verify_grasps)
pos_grasps, pos_qualities, neg_grasps, neg_qualities, obj_mesh, cad_path, cad_scale = self.read_grasp_file(grasp_path)
output_pcs = []
output_grasps = []
output_qualities = []
output_labels = []
output_pc_poses = []
output_cad_paths = [cad_path] * self._batch_size
output_cad_scales = np.asarray([cad_scale] * self._batch_size, np.float32)
num_positive = int(self._batch_size * self._ratio_positive)
positive_clusters = self.sample_grasp_indexes(num_positive, pos_grasps, pos_qualities)
num_negative = self._batch_size - num_positive
negative_clusters = self.sample_grasp_indexes(self._batch_size - num_positive, neg_grasps, neg_qualities)
hard_neg_candidates = []
# Fill in Positive Examples.
for positive_cluster in positive_clusters:
#print(positive_cluster)
selected_grasp = pos_grasps[positive_cluster[0]][positive_cluster[1]]
selected_quality = pos_qualities[positive_cluster[0]][positive_cluster[1]]
output_grasps.append(selected_grasp)
output_qualities.append(selected_quality)
output_labels.append(1)
hard_neg_candidates += perturb_grasp(
selected_grasp,
self._collision_hard_neg_num_perturbations,
self._collision_hard_neg_min_translation,
self._collision_hard_neg_max_translation,
self._collision_hard_neg_min_rotation,
self._collision_hard_neg_max_rotation,
)
if verify_grasps:
collisions, heuristic_qualities = evaluate_grasps(
output_grasps, obj_mesh
)
for computed_quality, expected_quality, g in zip(heuristic_qualities, output_qualities, output_grasps):
err = abs(computed_quality - expected_quality)
if err > 1e-3:
raise ValueError(
'Heuristic does not match with the values from data generation {}!={}'.format(
computed_quality, expected_quality
))
# If queue does not have enough data, fill it up with hard negative examples from the positives.
if grasp_path not in self._collision_hard_neg_queue or self._collision_hard_neg_queue[grasp_path].qsize() < num_negative:
if grasp_path not in self._collision_hard_neg_queue:
self._collision_hard_neg_queue[grasp_path] = Queue()
#hard negatives are perturbations of correct grasps.
random_selector = np.random.rand()
if random_selector < self._ratio_hardnegative:
print('add hard neg')
collisions, heuristic_qualities = evaluate_grasps(
hard_neg_candidates, obj_mesh
)
hard_neg_mask = collisions | (heuristic_qualities < 0.001)
hard_neg_indexes = np.where(hard_neg_mask)[0].tolist()
np.random.shuffle(hard_neg_indexes)
for index in hard_neg_indexes:
self._collision_hard_neg_queue[grasp_path].put(
(hard_neg_candidates[index], -1.0)
)
if random_selector >= self._ratio_hardnegative or self._collision_hard_neg_queue[grasp_path].qsize() < num_negative:
for negative_cluster in negative_clusters:
selected_grasp = neg_grasps[negative_cluster[0]][negative_cluster[1]]
selected_quality = neg_qualities[negative_cluster[0]][negative_cluster[1]]
self._collision_hard_neg_queue[grasp_path].put(
(selected_grasp, selected_quality)
)
# Use negative examples from queue.
for _ in range(num_negative):
#print('qsize = ', self._collision_hard_neg_queue[file_path].qsize())
grasp, quality = self._collision_hard_neg_queue[grasp_path].get()
output_grasps.append(grasp)
output_qualities.append(quality)
output_labels.append(0)
self.change_object(cad_path, cad_scale)
for iter in range(self._batch_size):
if iter > 0:
output_pcs.append(np.copy(output_pcs[0]))
output_pc_poses.append(np.copy(output_pc_poses[0]))
else:
pc, camera_pose, _ = self.render_random_scene()
output_pcs.append(pc)
output_pc_poses.append(inverse_transform(camera_pose))
output_grasps[iter] = camera_pose.dot(output_grasps[iter])
output_pcs = np.asarray(output_pcs, dtype=np.float32)
output_grasps = np.asarray(output_grasps, dtype=np.float32)
output_labels = np.asarray(output_labels, dtype=np.int32)
output_qualities = np.asarray(output_qualities, dtype=np.float32)
output_pc_poses = np.asarray(output_pc_poses, dtype=np.float32)
return output_pcs, output_grasps, output_labels, output_qualities, output_pc_poses, output_cad_paths, output_cad_scales
def _get_uniform_evaluator_data(self, grasp_path, verify_grasps=False):
pos_grasps, pos_qualities, neg_grasps, neg_qualities, obj_mesh, cad_path, cad_scale = self.read_grasp_file(grasp_path)
output_pcs = []
output_grasps = []
output_qualities = []
output_labels = []
output_pc_poses = []
output_cad_paths = [cad_path] * self._batch_size
output_cad_scales = np.asarray([cad_scale] * self._batch_size, np.float32)
num_positive = int(self._batch_size * self._ratio_positive)
positive_clusters = self.sample_grasp_indexes(num_positive, pos_grasps, pos_qualities)
num_hard_negative = int(self._batch_size * self._ratio_hardnegative)
num_flex_negative = self._batch_size - num_positive - num_hard_negative
negative_clusters = self.sample_grasp_indexes(num_flex_negative, neg_grasps, neg_qualities)
#print(
# 'positive = {}, hard_neg = {}, flex_neg = {}'.format(
# num_positive, num_hard_negative, num_flex_negative)
#)
hard_neg_candidates = []
# Fill in Positive Examples.
for clusters, grasps, qualities in zip([positive_clusters, negative_clusters], [pos_grasps, neg_grasps], [pos_qualities, neg_qualities]):
for cluster in clusters:
selected_grasp = grasps[cluster[0]][cluster[1]]
selected_quality = qualities[cluster[0]][cluster[1]]
hard_neg_candidates += perturb_grasp(
selected_grasp,
self._collision_hard_neg_num_perturbations,
self._collision_hard_neg_min_translation,
self._collision_hard_neg_max_translation,
self._collision_hard_neg_min_rotation,
self._collision_hard_neg_max_rotation,
)
if verify_grasps:
collisions, heuristic_qualities = evaluate_grasps(
output_grasps, obj_mesh
)
for computed_quality, expected_quality, g in zip(heuristic_qualities, output_qualities, output_grasps):
err = abs(computed_quality - expected_quality)
if err > 1e-3:
raise ValueError(
'Heuristic does not match with the values from data generation {}!={}'.format(
computed_quality, expected_quality
))
# If queue does not have enough data, fill it up with hard negative examples from the positives.
if grasp_path not in self._collision_hard_neg_queue or len(self._collision_hard_neg_queue[grasp_path]) < num_hard_negative:
if grasp_path not in self._collision_hard_neg_queue:
self._collision_hard_neg_queue[grasp_path] = []
#hard negatives are perturbations of correct grasps.
collisions, heuristic_qualities = evaluate_grasps(
hard_neg_candidates, obj_mesh
)
hard_neg_mask = collisions | (heuristic_qualities < 0.001)
hard_neg_indexes = np.where(hard_neg_mask)[0].tolist()
np.random.shuffle(hard_neg_indexes)
for index in hard_neg_indexes:
self._collision_hard_neg_queue[grasp_path].append(
(hard_neg_candidates[index], -1.0)
)
random.shuffle(self._collision_hard_neg_queue[grasp_path])
# Adding positive grasps
for positive_cluster in positive_clusters:
#print(positive_cluster)
selected_grasp = pos_grasps[positive_cluster[0]][positive_cluster[1]]
selected_quality = pos_qualities[positive_cluster[0]][positive_cluster[1]]
output_grasps.append(selected_grasp)
output_qualities.append(selected_quality)
output_labels.append(1)
# Adding hard neg
for i in range(num_hard_negative):
#print('qsize = ', self._collision_hard_neg_queue[file_path].qsize())
grasp, quality = self._collision_hard_neg_queue[grasp_path][i]
output_grasps.append(grasp)
output_qualities.append(quality)
output_labels.append(0)
self._collision_hard_neg_queue[grasp_path] = self._collision_hard_neg_queue[grasp_path][num_hard_negative:]
# Adding flex neg
if len(negative_clusters) != num_flex_negative:
raise ValueError(
'negative clusters should have the same length as num_flex_negative {} != {}'.format(len(negative_clusters), num_flex_negative)
)
for negative_cluster in negative_clusters:
selected_grasp = neg_grasps[negative_cluster[0]][negative_cluster[1]]
selected_quality = neg_qualities[negative_cluster[0]][negative_cluster[1]]
output_grasps.append(selected_grasp)
output_qualities.append(selected_quality)
output_labels.append(0)
self.change_object(cad_path, cad_scale)
for iter in range(self._batch_size):
if iter > 0:
output_pcs.append(np.copy(output_pcs[0]))
output_pc_poses.append(np.copy(output_pc_poses[0]))
else:
pc, camera_pose, _ = self.render_random_scene()
output_pcs.append(pc)
output_pc_poses.append(inverse_transform(camera_pose))
output_grasps[iter] = camera_pose.dot(output_grasps[iter])
output_pcs = np.asarray(output_pcs, dtype=np.float32)
output_grasps = np.asarray(output_grasps, dtype=np.float32)
output_labels = np.asarray(output_labels, dtype=np.int32)
output_qualities = np.asarray(output_qualities, dtype=np.float32)
output_pc_poses = np.asarray(output_pc_poses, dtype=np.float32)
return output_pcs, output_grasps, output_labels, output_qualities, output_pc_poses, output_cad_paths, output_cad_scales
def get_vae_data(self, grasp_path):
pos_grasps, pos_qualities, _, _, _, cad_path, cad_scale = self.read_grasp_file(grasp_path)
output_pcs = []
output_grasps = []
output_pc_poses = []
output_cad_files = [cad_path] * self._batch_size
output_cad_scales = np.asarray([cad_scale] * self._batch_size, dtype=np.float32)
output_qualities = []
all_clusters = self.sample_grasp_indexes(self._batch_size, pos_grasps, pos_qualities)
self.change_object(cad_path, cad_scale)
for iter in range(self._batch_size):
selected_grasp_index = all_clusters[iter]
selected_grasp = pos_grasps[selected_grasp_index[0]][selected_grasp_index[1]]
selected_quality = pos_qualities[selected_grasp_index[0]][selected_grasp_index[1]]
output_qualities.append(selected_quality)
if iter == 0:
pc, camera_pose, _ = self.render_random_scene()
output_pcs.append(pc)
output_pc_poses.append(inverse_transform(camera_pose))
else:
output_pcs.append(output_pcs[0].copy())
output_pc_poses.append(output_pc_poses[0].copy())
output_grasps.append(
camera_pose.dot(selected_grasp)
)
output_pcs = np.asarray(output_pcs, dtype=np.float32)
output_qualities = np.asarray(output_qualities, dtype=np.float32)
output_grasps = np.asarray(output_grasps, dtype=np.float32)
output_pc_poses = np.asarray(output_pc_poses, dtype=np.float32)
return output_pcs, output_grasps, output_pc_poses, output_cad_files, output_cad_scales, output_qualities
def sample_grasp_indexes(self, n, grasps, qualities):
"""
Stratified sampling of the graps.
"""
nonzero_rows = [i for i in range(len(grasps)) if len(grasps[i]) > 0]
num_clusters = len(nonzero_rows)
replace = n > num_clusters
if num_clusters == 0:
raise NoPositiveGraspsException
grasp_rows = np.random.choice(range(num_clusters), size=n, replace=replace).astype(np.int32)
grasp_rows = [nonzero_rows[i] for i in grasp_rows]
grasp_cols = []
for grasp_row in grasp_rows:
if len(grasps[grasp_rows]) == 0:
raise ValueError('grasps cannot be empty')
grasp_cols.append(np.random.randint(len(grasps[grasp_row])))
grasp_cols = np.asarray(grasp_cols, dtype=np.int32)
return np.vstack((grasp_rows, grasp_cols)).T
def read_grasp_file(self, path, return_all_grasps=False):
file_name = path
if self._caching and file_name in self._cache:
pos_grasps, pos_qualities, neg_grasps, neg_qualities, cad, cad_path, cad_scale = copy.deepcopy(self._cache[file_name])
return pos_grasps, pos_qualities, neg_grasps, neg_qualities, cad, cad_path, cad_scale
pos_grasps, pos_qualities, neg_grasps, neg_qualities, cad, cad_path, cad_scale = self.read_object_grasp_data(
path, ratio_of_grasps_to_be_used=self._ratio_of_grasps_used, return_all_grasps=return_all_grasps
)
if self._caching:
self._cache[file_name] = (pos_grasps, pos_qualities, neg_grasps, neg_qualities,
cad, cad_path, cad_scale)
return copy.deepcopy(self._cache[file_name])
return pos_grasps, pos_qualities, neg_grasps, neg_qualities, cad, cad_path, cad_scale
def read_object_grasp_data(
self, json_path, quality='quality_flex_object_in_gripper',
ratio_of_grasps_to_be_used=1., return_all_grasps=False):
"""
Reads the grasps from the json path and loads the mesh and all the
grasps.
"""
num_clusters = self._num_grasp_clusters
root_folder = self._root_folder
if num_clusters <= 0:
raise NoPositiveGraspsException
json_dict = json.load(open(json_path))
object_model = sample.Object(os.path.join(root_folder, json_dict['object']))
object_model.rescale(json_dict['object_scale'])
object_model = object_model.mesh
object_mean = np.mean(object_model.vertices, 0, keepdims=1)
object_model.vertices -= object_mean
grasps = np.asarray(json_dict['transforms'])
grasps[:, :3, 3] -= object_mean
flex_qualities = np.asarray(json_dict[quality])
try:
heuristic_qualities = np.asarray(json_dict['quality_number_of_contacts'])
except KeyError:
heuristic_qualities = np.ones(flex_qualities.shape)
successful_mask = np.logical_and(flex_qualities > 0.01, heuristic_qualities > 0.01)
positive_grasp_indexes = np.where(successful_mask)[0]
negative_grasp_indexes = np.where(~successful_mask)[0]
positive_grasps = grasps[positive_grasp_indexes, :, :]
negative_grasps = grasps[negative_grasp_indexes, :, :]
positive_qualities = heuristic_qualities[positive_grasp_indexes]
negative_qualities = heuristic_qualities[negative_grasp_indexes]
# print('positive grasps: {} negative grasps: {}'.format(positive_grasps.shape, negative_grasps.shape))
def cluster_grasps(grasps, qualities):
cluster_indexes = np.asarray(farthest_points(grasps, num_clusters, distance_by_translation_grasp))
output_grasps = []
output_qualities = []
for i in range(num_clusters):
indexes = np.where(cluster_indexes == i)[0]
if ratio_of_grasps_to_be_used < 1:
num_grasps_to_choose = max(1, int(ratio_of_grasps_to_be_used * float(len(indexes))))
if len(indexes) == 0:
raise NoPositiveGraspsException
indexes = np.random.choice(indexes, size=num_grasps_to_choose, replace=False)
output_grasps.append(grasps[indexes, :, :])
output_qualities.append(qualities[indexes])
output_grasps = np.asarray(output_grasps)
output_qualities = np.asarray(output_qualities)
return output_grasps, output_qualities
if not return_all_grasps:
positive_grasps, positive_qualities = cluster_grasps(
positive_grasps, positive_qualities
)
negative_grasps, negative_qualities = cluster_grasps(
negative_grasps, negative_qualities
)
num_positive_grasps = np.sum([p.shape[0] for p in positive_grasps])
num_negative_grasps = np.sum([p.shape[0] for p in negative_grasps])
else:
num_positive_grasps = positive_grasps.shape[0]
num_negative_grasps = negative_grasps.shape[0]
return positive_grasps, positive_qualities, negative_grasps, negative_qualities, object_model, os.path.join(root_folder, json_dict['object']), json_dict['object_scale']
def generate_object_set(self, split_name):
obj_files = self._eval_files[np.random.randint(0, len(self._eval_files))][split_name]
return os.path.join('grasps', obj_files[np.random.randint(0, len(obj_files))])
def arrange_objects(self, meshes):
return np.eye(4)
def __del__(self):
print('********** terminating renderer **************')
self._renderer.terminate()
self._renderer.join()
print('done')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Grasp data reader")
parser.add_argument(
'--root-folder',
help='Root dir for data',
type=str,
default='unified_grasp_data')
parser.add_argument(
'--vae-mode',
help='True for vae mode',
action='store_true',
default=False)
parser.add_argument(
'--grasps-ratio',
help='ratio of grasps to be used from each cluster. At least one grasp is chosen from each cluster.',
type=float,
default=1.0
)
parser.add_argument(
'--balanced_data',
action='store_true',
default=False,
)
parser.add_argument('--allowed_category', default='', type=str)
args = parser.parse_args()
args.root_folder = os.path.abspath(args.root_folder)
print('Root folder', args.root_folder)
import glob
from visualization_utils import draw_scene
import mayavi.mlab as mlab
pcreader = PointCloudReader(
root_folder=args.root_folder,
batch_size=64,
num_grasp_clusters=32,
npoints=1024,
ratio_of_grasps_used=args.grasps_ratio,
balanced_data=args.balanced_data
)
grasp_paths = glob.glob(os.path.join(args.root_folder, 'grasps') + '/*.json')
if args.allowed_category != '':
grasp_paths = [g for g in grasp_paths if g.find(args.allowed_category)>=0]
for grasp_path in grasp_paths:
if args.vae_mode:
output_pcs, output_grasps, output_pc_poses, output_cad_files, output_cad_scales, output_qualities = pcreader.get_vae_data(grasp_path)
output_labels = None
else:
output_pcs, output_grasps, output_labels, output_qualities, output_pc_poses, output_cad_files, output_cad_scales = pcreader.get_evaluator_data(grasp_path, verify_grasps=False)
print(output_grasps.shape)
for pc, pose in zip(output_pcs, output_pc_poses):
assert(np.all(pc == output_pcs[0]))
assert(np.all(pose == output_pc_poses[0]))
pc = output_pcs[0]
pose = output_pc_poses[0]
cad_file = output_cad_files[0]
cad_scale = output_cad_scales[0]
obj = sample.Object(cad_file)
obj.rescale(cad_scale)
obj = obj.mesh
obj.vertices -= np.expand_dims(np.mean(obj.vertices, 0), 0)
print('mean_pc', np.mean(pc, 0))
print('pose', pose)
draw_scene(
pc,
grasps=output_grasps,
grasp_scores=None if args.vae_mode else output_labels,
)
mlab.figure()
draw_scene(
pc.dot(pose.T),
grasps=[pose.dot(g) for g in output_grasps],
mesh=obj,
grasp_scores=None if args.vae_mode else output_labels,
)
mlab.show()